Advertisement

ANN-Based Model for Simple Grammatical Cases Teaching in Spanish Language

  • Laura Márquez GarcíaEmail author
  • Adán Gómez Salgado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

The Multilayer Perceptron (MLP) is one of the most powerful and popular network architectures, due to its ability to solve a large number of problems successfully. The objective of this work is to develop a model based on neural networks to solve simple grammar cases in the Spanish language, which in turn, allows the teaching of Artificial Neural Networks (ANN) in students. The presented model consists of 12 stages that allow to simulate simple grammatical cases. An illustrative example is presented with two programs that allow to simulate the grammatical case “Uppercase Identification” and “Infinitive Verbs” using MLP; each had a training scenario and a learning verification scenario.

Keywords

Artificial Neural Network Gramatical cases Multilayer perceptron Simulator 

References

  1. 1.
    De Armas, T.: Redes Neuronales Artificiales. Fundamentos básicos de inteligencia artificial con Matlab, pp. 152–156. Educosta (2009)Google Scholar
  2. 2.
    Díaz, P.-C.J., Soria, O.E., Martínez, M.J., Escandell, M.P., Gómez, S.J.: Software educativo basado en las GUI de Matlab para cursos de redes neuronales. In: Psicología y salud mental: conceptos, metodologías, herramientas y aplicaciones, pp. 1730–1755. En I. Management Association (2016). http://doi.org/10.4018/978-1-5225-0159-6.ch075
  3. 3.
    Ugur, A., Kinaci, A.-C.A.: A web-based tool for teaching neural network concepts. Comput. Appl. Eng. Educ. 18(3), 449–457 (2010)CrossRefGoogle Scholar
  4. 4.
    Matich, D.J.: Neural Networks: Basic Concepts and Applications. Universidad Tecnológica Nacional, México (2001)Google Scholar
  5. 5.
    Goldberg, Y.: Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol. 10(1), 1–309 (2017)CrossRefGoogle Scholar
  6. 6.
    Klein, M., Kamp, H., Palm, G., Doya, K.: A computational neural model of goal-directed utterance selection. Neural Netw. 23(5), 592–606 (2010)CrossRefGoogle Scholar
  7. 7.
    Carneiro, H.C., França, F.M., Lima, P.M.: Multilingual part-of-speech tagging with weightless neural networks. Neural Netw. 66, 11–21 (2015)CrossRefGoogle Scholar
  8. 8.
    Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. In: Advances in Neural Information Processing Systems, pp. 2042–2050 (2014)Google Scholar
  9. 9.
    Clarke, D.: A context-theoretic framework for compositionality in distributional semantics. Comput. Linguist. 38(1), 41–71 (2012)CrossRefGoogle Scholar
  10. 10.
    Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25. Determination Press, USA (2015)Google Scholar
  11. 11.
    Haykin, S.S.: Rosenblatt’s perceptron. In: Neural Networks and Learning Machines, pp. 48–62 (2009)Google Scholar
  12. 12.
    Barandela, R., Gasca, E., Alejo, R.: Corrección de la Muestra para el Aprendizaje del Perceptron Multicapa. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial 5(13), 2–9 (2001)Google Scholar
  13. 13.
  14. 14.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 213–221 (1998)zbMATHGoogle Scholar
  15. 15.
    García, N.B.: Implementación de técnicas de deep learning (2015). https://riull.ull.es/xmlui/handle/915/1409
  16. 16.
    Longoni, M.G., Porcel, E., López, M.V., Dapozo, G.N.: Modelos de Redes Neuronales Perceptrón Multicapa y de Base Radial para la predicción del rendimiento académico de alumnos universitarios. In: XVI Congreso Argentino de Ciencias de la Computación (2010)Google Scholar
  17. 17.
    Alonso, A.-D.C., Jara, E.A.: Visión por computadora: identificación, clasificación y seguimiento de objetos. FPUNE Scientific, vol. 10 (2016)Google Scholar
  18. 18.
    Cinca, C.S., del Brío, B.M.: Predicción de la quiebra bancaria mediante el empleo de redes neuronales artificiales. Revista española de Financiación y Contabilidad. 74, 153–176 (1993)Google Scholar
  19. 19.
    Tabares, H., Branch, J., Valencia, J.: Generación dinámica de la topología de una red neuronal artificial del tipo Perceptron Multicapa. Revista Facultad de Ingeniería Universidad de Antioquia 38, 146–162 (2006)Google Scholar
  20. 20.
    Yiğit, T., Işik, A.H., Bilen, M.: Web based educational software for artificial neural networks. In: ICEMST 2014, pp. 629–632 (2014)Google Scholar
  21. 21.
    Zhang, Y., Sun, Y., Phillips, P., Liu, G., Zhou, X., Wang, S.: A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J. Med. Syst. 40(7), 173 (2016)CrossRefGoogle Scholar
  22. 22.
    Parlos, A.G., Fernández, B., Atiya, A.F., Muthusami, J., Tsai, W.K.: Un algoritmo de aprendizaje acelerado para redes de perceptrón multicapa. IEEE Trans. Neural Netw. 5(3), 493–497 (1994)CrossRefGoogle Scholar
  23. 23.
    Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Deperlioglu, O., Kose, U.: An educational tool for artificial neural networks. Comput. Electr. Eng. 37(3), 392–402 (2011)CrossRefGoogle Scholar
  25. 25.
    Díaz, M.P., Carrasco, J.J., Soria, O.E., Martínez M.J., Escandell M.P., Gómez S.J.: Educational software based on Matlab GUIs for neural networks courses. In: Handbook of Research on Computational Simulation and Modeling in Engineering, pp. 333–358. IGI Global (2016)Google Scholar
  26. 26.
    Aryadoust, V., Baghaei, P.: Does EFL readers’ lexical and grammatical knowledge predict their reading ability? Insights from a perceptron artificial neural network study. Educ. Assess. 21(2), 135–156 (2016)CrossRefGoogle Scholar
  27. 27.
    Gentleman, R., Ihaka, R.: R Project for Statistical Computing (3.6.0) (software) (1993). https://www.r-project.org/
  28. 28.
    University of Waikato: WEKA (3.6.6) (software) (2006). https://www.cs.waikato.ac.nz/ml/index.html
  29. 29.
    Eberhard Karls University of Tübingen.: SNNS (4.3) (software) (2008). http://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
  30. 30.
    Chartier, B.P., Mahler, K.: Machine Translation and Neural Networks for a multilingual EU. Zeitschrift für Europäische Rechtslinguistik (ZERL) (2018)Google Scholar
  31. 31.
    Vurkaç, M.: Prestructuring multilayer perceptrons based on information-theoretic modeling of a Partido-Alto-based Grammar for Afro-Brazilian music: enhanced generalization and principles of Parsimony, including an investigation of statistical paradigms. Portland State University (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Córdoba UniversityMonteríaColombia

Personalised recommendations