Path Planning for Mobile Robot Based on Cubic Bézier Curve and Adaptive Particle Swarm Optimization (A2PSO)

  • Daniel Soto
  • Wilson SotoEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


In this work, a new approach is proposed for getting a solution of path-planning for mobile robot based on cubic Bézier curve and adaptive particle swarm optimization (A2PSO). Paths generated using a cubic Bézier curve are optimized globally through the A2PSO algorithm. The A2PSO algorithm is significantly more powerful than conventional PSO algorithm. Our approach was successful in determining the shortest path in several environments full of obstacles compared to the performance of the conventional PSO.


Path planning Cubic Bézier curve Bio-inspired algorithms Particle swarm optimization 


  1. 1.
    Pérez, L.H., Mora Aguilar, M.C., Sánchez, N.M., Montesinos, A.F.: Path planning based on parametric curves, chapter 7, pp. 125–143. InTech, September 2018Google Scholar
  2. 2.
    Costanzi, R., Fanelli, F., Meli, E., Ridolfi, A., Allotta, B.: Generic path planning algorithm for mobile robots based on Bézier curves. IFAC-PapersOnLine 49(15), 145–150 (2016). 9th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2016CrossRefGoogle Scholar
  3. 3.
    Ravankar, A., Ravankar, A., Kobayashi, Y., Hoshino, Y., Peng, C.-C.: Path smoothing techniques in robot navigation: state-of-the-art, current and future challenges. Sensors 18(9), 3170 (2018)CrossRefGoogle Scholar
  4. 4.
    Elbanhawi, M., Simic, M., Jazar, R.N.: Continuous path smoothing for car-like robots using B-Spline curves. J. Intell. Robot. Syst. 80(1), 23–56 (2015)CrossRefGoogle Scholar
  5. 5.
    Nie, Z., Yang, X., Gao, S., Zheng, Y., Wang, J., Wang, Z.: Research on autonomous moving robot path planning based on improved particle swarm optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2532–2536, July 2016Google Scholar
  6. 6.
    Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of mobile robots: a review. Procedia Comput. Sci. 133, 141–152 (2018). International Conference on Robotics and Smart Manufacturing (RoSMa 2018)CrossRefGoogle Scholar
  7. 7.
    Dewang, H.S., Mohanty, P.K., Kundu, S.: A robust path planning for mobile robot using smart particle swarm optimization. Procedia Comput. Sci. 133, 290–297 (2018)CrossRefGoogle Scholar
  8. 8.
    Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using particle swarm optimization of Ferguson splines. In: 2006 IEEE Conference on Emerging Technologies and Factory Automation, pp. 833–839, September 2006Google Scholar
  9. 9.
    Arana-Daniel, N., Gallegos, A.A., López-Franco, C., Alanis, A.Y.: Smooth global and local path planning for mobile robot using particle swarm optimization, radial basis functions, splines and Bézier curves. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 175–182, July 2014Google Scholar
  10. 10.
    Li, G., Wusheng, C.: Path planning for mobile robot using self-adaptive learning particle swarm optimization. Sci. China Inf. Sci. 61(5), 052204 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tharwat, A., Elhoseny, M., Hassanien, A.E., Gabel, T., Kumar, A.: Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Comput. 1–22 (2018)Google Scholar
  12. 12.
    Liang, J.J., Song, H., Qu, B.Y., Liu, Z.F.: Comparison of three different curves used in path planning problems based on particle swarm optimizer. Math. Prob. Eng. 2014, 1–15 (2014) Google Scholar
  13. 13.
    Soto, D., Soto, W.: A parallel adaptive PSO algorithm with non-iterative electrostatic repulsion and social dynamic neighborhood. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds.) Intelligent Systems Design and Applications, pp. 570–581. Springer, Cham (2017)CrossRefGoogle Scholar
  14. 14.
    Gaillard, F.: Approche cognitive pour la planification de trajectoire sous contraintes. Ph.D. thesis, Université des Sciences et Technologie de Lille - Lille I (2012)Google Scholar
  15. 15.
    Connors, J., Elkaim, G.: Analysis of a spline based, obstacle avoiding path planning algorithm. In: 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, pp. 2565–2569, April 2007Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de AntioquiaMedellí­nColombia
  2. 2.Universidad Católica de PereiraPereiraColombia

Personalised recommendations