Advertisement

Application of Data Mining and Data Visualization in Strategic Management Data at Israel Technological University of Ecuador

  • Paul Francisco Baldeon EgasEmail author
  • Miguel Alfredo Gaibor Saltos
  • Renato Toasa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

Currently, data analysis in higher education institutions is not a luxury, it is a necessity. The large amounts of data generated through university academic functions are the main reason for an analysis and representation of these; since they will allow an adequate decision making in the university academic processes. In this work we propose to perform an analysis of the data generated in the Israel Technological University from Ecuador in the period 2012–2018; for this we apply Data mining algorithms to make suitable predictions and by using data visualization techniques to represent this information allowing us to easily understand it; as a result, relevant information is obtained that will allow the personnel in charge to make the appropriate decisions and improve the processes that have low percentages.

Keywords

Data mining Visualization Strategic management Higher education 

References

  1. 1.
    Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)CrossRefGoogle Scholar
  2. 2.
    Xyntarakis, M., Antoniou, C.: Data science and data visualization. In: Mobility Patterns, Big Data and Transport Analytics, pp. 107–144. Elsevier (2019)Google Scholar
  3. 3.
    Toasa, R., Maximiano, M., Reis, C., Guevara, D.: Data visualization techniques for real-time information—a custom and dynamic dashboard for analyzing surveys’ results. In: 2018 13th Iberian Conference on Information Systems and Technologies, pp. 1–7, June 2018Google Scholar
  4. 4.
    Rivero, J.L.A., López, J.G.: El proceso de planificación estratégica en las universidades: desencuentros y retos para el mejoramiento de su calidad. Rev. Gestão Univ. na América Lat. - GUAL, vol. 5, no. 2, pp. 72–97, August 2012Google Scholar
  5. 5.
    Khan, K.S., Kunz, R., Kleijnen, J., Antes, G.: Five steps to conducting a systematic review. J. R. Soc. Med. 96, 118–121 (2003)CrossRefGoogle Scholar
  6. 6.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 7(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logist. 34(2), 77–84 (2013)CrossRefGoogle Scholar
  8. 8.
    Román, A.B., Sánchez-Guzmán, D., Salcedo, R.G.: Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo (2014)Google Scholar
  9. 9.
    West, D.M.: Big data for education: data mining, data analytics, and web dashboards (2012)Google Scholar
  10. 10.
    Shea, K.D., Brewer, B.B., Carrington, J.M., Davis, M., Gephart, S., Rosenfeld, A.: A model to evaluate data science in nursing doctoral curricula. Nurs. Outlook 67(1), 39–48 (2019)CrossRefGoogle Scholar
  11. 11.
    Steele, J., Iliinsky, N.P.N.: Beautiful visualization : [looking at data through the eyes of experts] (2010)Google Scholar
  12. 12.
    Kotu, V., Deshpande, B., Kotu, V., Deshpande, B.: Data science process. In: Data Science, pp. 19–37. Morgan Kaufmann (2019)Google Scholar
  13. 13.
    SistemaEduca: Fases Data Mining. https://sistemeduca.com/fases-data-mining/. Accessed 28 Mar 2019
  14. 14.
    Keim, D.A.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44 (2001)CrossRefGoogle Scholar
  15. 15.
    SAS: Data Visualization Techniques, White Paper, pp. 2–16 (2013)Google Scholar
  16. 16.
    Rose, S.: Return on information : the new ROI getting value from data. SAS Inst. Inc., USA (2014)Google Scholar
  17. 17.
    Sankey Flow Show - Attractive flow diagrams made in minutes! http://www.sankeyflowshow.com/. Accessed 28 Sept 2017

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Tecnológica IsraelQuitoEcuador

Personalised recommendations