Advertisement

Vitiligo Detection Using Cepstral Coefficients

  • Christian Salamea
  • Juan Fernando ChicaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

Vitiligo is a pathology that causes the appearance of macules achromic (white spots) in the skin. Besides, generates a negative emotional burden in the people that have it, what make necessary to develop suitable methods to identify and treat it properly. In this paper we propose a novel system formed by two stages: The Front End where the principal characteristics of the image are extracted using the Mel Frequency Cepstral Coefficients (MFCC) and i-Vectors (techniques widely used in speech processing) and the Back End, where these characteristics are received and through a classifier is define whether and image contains or not vitiligo. Artificial Neural Networks and Support Vector Machines were selected as classifiers. Results shows that both MFCC and i-Vectors could be used in the field of image processing. Although, the i-Vectors allows us to decrease more the dimensionality of a feature vector and without losing the characteristics of the high dimensionality, this was reflected in their performance with an accuracy of 95.28% to recognize correctly images.

Keywords

Dimensionality reduction Feature extraction i-Vectors MFCC Medical image processing 

References

  1. 1.
    Fadzil, M.H.A., Norashikin, S., Suraiya, H.H., Nugroho, H.: Independent component analysis for assessing therapeutic response in vitiligo skin disorder. J. Med. Eng. Technol. 33(2), 101–109 (2009)CrossRefGoogle Scholar
  2. 2.
    Alikhan, A., Felsten, L.M., Daly, M., Petronic-Rosic, V.: Vitiligo: a comprehensive overview. J. Am. Acad. Dermatol. 65(3), 473–491 (2011)CrossRefGoogle Scholar
  3. 3.
    Papadopoulos, L., Bor, R., Legg, C.: Coping with the disfiguring effects of vitiligo: a preliminary investigation into the effects of cognitive-behavioural therapy. Br. J. Med. Psychol. 72(3), 385–396 (1999)CrossRefGoogle Scholar
  4. 4.
    Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)CrossRefGoogle Scholar
  5. 5.
    Das, N., Pal, A., Mazumder, S., Sarkar, S., Gangopadhyay, D., Nasipuri, M.: An SVM based skin disease identification using local binary patterns. In: 2013 Third International Conference on Advances in Computing and Communications, Cochin, India, pp. 208–211 (2013)Google Scholar
  6. 6.
    Alghamdi, K.M., Kumar, A., Taïeb, A., Ezzedine, K.: Assessment methods for the evaluation of vitiligo: Vitiligo assessment methods. J. Eur. Acad. Dermatol. Venereol. 26(12), 1463–1471 (2012)Google Scholar
  7. 7.
    Nurhudatiana, A.: A Computer-aided diagnosis system for vitiligo assessment: a segmentation algorithm. In: Intan, R., Chi, C.-H., Palit, H.N., Santoso, L.W. (eds.) Intelligence in the Era of Big Data, vol. 516, pp. 323–331. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Hani, A.F.M., Nugroho, H., Shamsudin, N., Baba, R.: Melanin determination using optimised inverse monte carlo for skin—light interaction. In: 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS), vol. 1, pp. 314–318 (2012)Google Scholar
  9. 9.
    Tiwari, V.: MFCC and its applications in speaker recognition. Int. J. Emerg. Technol. 1(1), 19–22 (2011)Google Scholar
  10. 10.
    Nisar, S., Ashraf, M.W.: A new approach for toe recognition using mel frequency cepstral coefficients. In: 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, pp. 291–294 (2016)Google Scholar
  11. 11.
    Gupta, S., Jaafar, J., wan Ahmad, W.F., Bansal, A.: Feature extraction using MFCC. Sig. Image Process. Int. J. 4(4), 101–108 (2013)CrossRefGoogle Scholar
  12. 12.
    Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-End factor analysis for speaker verification. IEEE Transact. Audio Speech Lang. Process. 19(4), 788–798 (2011)CrossRefGoogle Scholar
  13. 13.
    Salamea, C., D’Haro, L.F., Córdoba, R., Caraballo, M.Á.: Incorporación de n-gramas discriminativos para mejorar un reconocedor de idioma fonotáctico basado en i-vectores. Procesamiento del lenguaje natural (51), 145–152 (2013)Google Scholar
  14. 14.
    Dehak, N., Torres-Carrasquillo, P.A., Reynolds, D., Dehak, R.: Language recognition via i-vectors and dimensionality reduction. In: Twelfth Annual Conference of the International Speech Communication Association (2011)Google Scholar
  15. 15.
    HTK MFCC MATLAB - File Exchange - MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/32849. Accessed 27 Mar 2019
  16. 16.
    Young, S., Evermann, G., Gales, M., Hain, T.: The_HTK_book.pdf. Engineering Department (2006)Google Scholar
  17. 17.
    Hasan, R., Jamil, M., Rahman, G.R.S.: Speaker identification using mel frequency cepstral coefficients. Variations 1(4) (2004)Google Scholar
  18. 18.
    Paliwal, K.K.: Decorrelated and liftered filter-bank energies for robust speech recognition. In: Sixth European Conference on Speech Communication and Technology (1999)Google Scholar
  19. 19.
    Ellis, D.: Reproducing the feature outputs of common programs in Matlab using melfcc.m (2005). http://www.ee.columbia.edu/~dpwe/LabROSA/matlab/rastamat/mfccs.html. Accessed 26 Mar 2019
  20. 20.
    Hasan, T., Hansen, J.H.L.: A study on universal background model training in speaker verification. IEEE Transact. Audio Speech Lang. Process. 19(7), 1890–1899 (2011)CrossRefGoogle Scholar
  21. 21.
    Sadjadi, S.O., Slaney, M., Heck, L.: MSR identity toolbox v1.0: a MATLAB toolbox for speaker-recognition research. Speech Lang. Process. Tech. Comm. Newsl. 1(4), 1–32 (2013)Google Scholar
  22. 22.
    Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)CrossRefGoogle Scholar
  23. 23.
    Ceballos-Magaña, S.G., et al.: Characterisation of tequila according to their major volatile composition using multilayer perceptron neural networks. Food Chem. 136(3–4), 1309–1315 (2013)CrossRefGoogle Scholar
  24. 24.
    Koolagudi, S.G., Rastogi, D., Rao, K.S.: Identification of language using mel-frequency cepstral coefficients (MFCC). Proc. Eng. 38, 3391–3398 (2012)CrossRefGoogle Scholar
  25. 25.
    Hassan, F., Alam Kotwal, M.R., Rahman, M.M., Nasiruddin, M., Latif, M.A., Nurul Huda, M.: Local feature or Mel frequency cepstral coefficients - which one is better for MLN-based Bangla speech recognition? In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) Advances in Computing and Communications, vol. 191, pp. 154–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Politécnica SalesianaCuencaEcuador
  2. 2.Grupo de Investigación en Interacción, Robótica y AutomáticaCuencaEcuador

Personalised recommendations