Advertisement

Biomechanics of Soft Tissues: The Role of the Mathematical Model on Material Behavior

  • Carlos Bustamante-Orellana
  • Robinson Guachi
  • Lorena Guachi-GuachiEmail author
  • Simone Novelli
  • Francesca Campana
  • Fabiano Bini
  • Franco Marinozzi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

Mechanical properties of the soft tissues and an accurate mathematical model are important to reproduce the soft tissue’s material behavior (mechanical behavior) in a virtual simulation. This type of simulations by Finite Element Analysis (FEA) is required to analyze injury mechanisms, vehicle accidents, airplane ejections, blast-related events, surgical procedures simulation and to develop and test surgical implants where is mandatory take into account the high strain-rate. This work aims to highlight the role of the hyperelastic models, which can be used to simulate the highly nonlinear mechanical behavior of soft tissues.

After a description of a set of formulations that can be defined as phenomenological models, a comparison between two models is discussed according to case study that represents a process of tissues clamping.

Keywords

Hyperelastic mathematical models Soft tissues behavior FEA 

References

  1. 1.
    Wren, T., Carter, D.: A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J. Biomech. Eng. 120(1), 55–61 (1996)CrossRefGoogle Scholar
  2. 2.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer Science, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Yamada, H.: Strength of Biological Materials, 1st edn. Williams & Wilkins, Baltimore (1970)Google Scholar
  4. 4.
    Marinozzi, F., Bini, F., Marinozzi, A., Zuppante, F., De Paolis, A., Pecci, R., Bedini, R.: Tecnique for bone volume measurement from human femur head samples by classification of micro-CT image histograms. Ann. I. Super. Sanità 49(3), 300–305 (2013)Google Scholar
  5. 5.
    Ottensmeyer, M., Kerdok, A., Howe, R., Dawson, L.: The effects of testing environment on the viscoelastic properties of soft tissues. In: Cotin, S., Metaxas, D. (eds.) Medical Simulation, ISMS 2004. Lecture Notes in Computer Science, vol. 3078, pp. 9–18. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Guachi, R., Bini, F., Bici, M., Campana, F., Marinozzi, F.: Finite element model set-up of colorectal tissue for analyzing surgical scenarios. In: Tavares, J., Natal Jorge, R. (eds.) VipIMAGE 2017. Lecture Notes in Computational Vision and Biomechanics, vol. 27, pp. 599–609. Springer, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Mayeur, O., Witz, J., Lecomte, P., Brieu, M., Cosson, M., Miller, K.: Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann. Biomed. Eng. 4(1), 202–212 (2016)CrossRefGoogle Scholar
  8. 8.
    Rubod, C., Brieu, M., Cosson, M., Rivaux, G., Clay, J.C., De Landsheere, L., Gabriel, B.: Biomechanical properties of human pelvic organs. Urology 79(4), 968.e17–968.e22 (2012)CrossRefGoogle Scholar
  9. 9.
    Chantereau, P., Brieu, M., Kammal, M., Farthmann, J., Gabriel, B., Cosson, M.: Mechanical properties of pelvic soft tissue of young women and impact of aging. Int. Urogynecol. J. 25(11), 1547–1553 (2014)CrossRefGoogle Scholar
  10. 10.
    Christensen, M., Oberg, K., Wolchok, J.: Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue. Springerplus 4(1), 142 (2015)CrossRefGoogle Scholar
  11. 11.
    Gao, C., Gregersen, H.: Biomechanical and morphological properties in rat large intestine. J. Biomech. 33(9), 1089–1097 (2000)CrossRefGoogle Scholar
  12. 12.
    Liao, D., Zhao, J., Gregersen, H.: 3D Mechanical properties of the partially obstructed guinea pig small intestine. J. Biomech. 43(11), 2079–2086 (2010)CrossRefGoogle Scholar
  13. 13.
    Shahzad, M., Kamran, A., Siddiqui, M.Z., Farhan, M.: Mechanical characterization and FE modelling of a hyperelastic material. Mater. Res. 18(5), 918–924 (2015)CrossRefGoogle Scholar
  14. 14.
    Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27(8), 995–1004 (2008)CrossRefGoogle Scholar
  15. 15.
    Chung, T.: General Continuum Mechanics, 2nd edn. Cambridge University Press, Huntsville (2007)CrossRefGoogle Scholar
  16. 16.
    Calvo-Gallego, J., Domínguez, J., Gómez Cía, T., Gómez Ciriza, G., Martínez-Reina, J.: Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study. J. Mech. Behav. Biomed. Mater. 80, 293–302 (2018)CrossRefGoogle Scholar
  17. 17.
    Guachi, R., Bici, M., Guachi, L., Campana, F., Bini, F., Marinozzi, F.: Geometrical modelling effects on FEA of colorectal surgery. Comput.-Aided Des. Appli. 16(4), 778–788 (2019)CrossRefGoogle Scholar
  18. 18.
    Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)CrossRefGoogle Scholar
  19. 19.
    Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)CrossRefGoogle Scholar
  20. 20.
    Thewlis, J.: Concise Dictionary of Physics, p. 248. Pergamon Press, Oxford (1973)Google Scholar
  21. 21.
    Broggiato, G., Campana, F., Cortese, L.: Parameter identification of a material damage model: inverse approach by the use of digital image processing. In: University of Parma/Ingegneria Industriale (eds.) 22nd Danubia-Adria Symposium on Experimental Methods in Solid Mechanics, DAS 2005, Parma, pp. 19–20 (2005)Google Scholar
  22. 22.
    Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)CrossRefGoogle Scholar
  23. 23.
    Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. Roy. Soc. Lond. Ser. 241(835), 379–397 (1948)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hamza, M.N., Alwan, H.M.: Hyperelastic constitutive modeling of rubber and rubber- like materials under finite strain. Eng. Technol. J. 28(13), 2560–2575 (2010)Google Scholar
  25. 25.
    Martins, P., Jorge, R., Ferreira, A.: A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)CrossRefGoogle Scholar
  26. 26.
    Gent, A.: Engineering with Rubber, 2nd edn. Carl Hanser Verlag, Munich (2001)Google Scholar
  27. 27.
    Araneo, R., Bini, F., Rinaldi, A., Notargiacomo, A., Pea, M., Celozzi, S.: Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 26(26), 265402 (2015)CrossRefGoogle Scholar
  28. 28.
    Araneo, R., Rinaldi, A., Notargiacomo, A., Bini, F., Marinozzi, F., Pea, M., Lovat, G., Celozzi, S.: Effect of the scaling of the mechanical properties on the performances of ZnO Piezo-semiconductive nanowires. In: Nanoforum 2013 on AIP Conference Proceedings, vol. 1603, pp. 14–22. Rome (2014)Google Scholar
  29. 29.
    Elariny, H., González, H., Wang, B.: Tissue thickness of human stomach measured on excised gastric specimens from obese patients. Surg. Technol. Int. 14, 119–124 (2005)Google Scholar
  30. 30.
    Offodile, A., Feingold, D., Nasar, A., Whelan, R., Arnell, T.: High incidence of technical errors Involving the EEA circular stapler: a single institution experience. J. Am. Coll. Surg. 210(3), 331–335 (2010)CrossRefGoogle Scholar
  31. 31.
    Okano, K., Oshima, M., Kakinoki, K., Yamamoto, N., Akamoto, S., Yachida, S., Hagiike, M., Kamada, H., Masaki, T., Susuki, Y.: Pancreatic thickness as a predictive factor for postoperative pancreatic fistula after distal pancreatectomy using an endopath stapler. Surg. Today 43(2), 141–147 (2013)CrossRefGoogle Scholar
  32. 32.
    Kester, E., Rabe, U., Presmanes, L., Tailhades, T., Arnold, W.: Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12(5–8), 779–782 (1999)CrossRefGoogle Scholar
  33. 33.
    Egorov, V., Schastlivtsev, I., Prut, E., Baranov, A., Turusov, R.: Mechanical properties of the human gastrointestinal tract. J. Biomech. 35(10), 1417–1425 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Yachay Tech UniversityUrcuquíEcuador
  2. 2.SDAS Research GroupYachay TechUrcuquíEcuador
  3. 3.Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
  4. 4.Institute for Liver and Digestive HealthUniversity College London (UCL)LondonUK
  5. 5.Universidad Internacional del EcuadorQuitoEcuador

Personalised recommendations