Measuring Surfaces in Orthophotos Based in Color Segmentation Using K-means

  • F. Enriquez
  • G. DelgadoEmail author
  • F. Arbito
  • A. Cabrera
  • D. Iturralde
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)


This research presented a method to perform the measurement of orthophotography areas. An unsupervised segmentation was developed using K-means for each pixel to reconstruct an image with fewer colors to perform an area measurement through each given color tone. The Calinski-Harabasz index (CHI) was also studied; which allows a better choice of the color space in which the algorithm will be executed. The results of the execution times for each color space are presented, obtaining an error of approximately 0.08% in the measurement of the area.


K-means Areas Clustering Orthophotography Color spaces 



This research was supported by Vicerrectorado de Investigaciones of Universidad del Azuay. We thank our colleagues from Department of Electronics Engineer who provided insight and experience that greatly assisted the research.


  1. 1.
    Lear, C.: Digital orthophotography: mapping with pictures. IEEE Comput. Graph. Appl. 17(5), 12–14 (1997)CrossRefGoogle Scholar
  2. 2.
    Li, J., Wang, J., Mao, J.: Color moving object detection method based on automatic color clustering. In: Proceedings of the 33rd Chinese Control Conference, pp. 7232–7235 (2014)Google Scholar
  3. 3.
    Dehariya, V., Shrivastava, S., Jain, R.: Clustering of image data set using k-means and fuzzy k-means algorithms. In: 2010 International Conference on Computational Intelligence and Communication Networks, pp. 386–391 (2010)Google Scholar
  4. 4.
    Agisoft LLC: Agisoft (2018).
  5. 5.
    Szeliski, R.: Image alignment and stitching. Found. Trends Comput. Graph. Vis. 43–61 (2006)Google Scholar
  6. 6.
    Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp. 510–517 (2005)Google Scholar
  7. 7.
    Arabie, P., De Soete, G.: Clustering and Classification. Word Scientific, Singapore (1998)Google Scholar
  8. 8.
    Agarwal, S., Yadav, S., Singh, K.: K-means versus k-means++ clustering technique. In: 2012 Students Conference on Engineering and Systems, pp. 1–6 (2012)Google Scholar
  9. 9.
    Day, W., Edelsbrunner, H.: Efficient algorithms for agglomerative clustering methods. J. Classif. 1, 7–24 (1984)CrossRefGoogle Scholar
  10. 10.
    Ganesan, P., Rajini, V.: Assessment of satellite image segmentation in RGB and HSV color space using image quality measures. In: 2014 International Conference on Advances in Electrical Engineering (ICAEE), pp. 1–5 (2014)Google Scholar
  11. 11.
    Łukasik, S., Kowalski, P. Charytanowicz, M., Kulczycki, P.: Clustering using flower pollination algorithm and Calinski-Harabasz index. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2724–2728 (2016)Google Scholar
  12. 12.
    Alegre, E., Pajares G., de la Escalera, A.: Conceptos y Métodos en Visión por Computador, España: Comité Español de Automática (CEA), p. 169 (2016)Google Scholar
  13. 13.
    Domínguez, S.: Analisis de imágenes mediante el metodo de los momentos usando funciones de base continuas a intervalos (PCBF). Revista Iberoamericana de Automática e Informática industrial 12, 69–78 (2015)CrossRefGoogle Scholar
  14. 14.
    Hernández, L., Rodríguez, E., Martínez, A., Álvarez, H., Kharuf, S.: Levantamiento Fotogrametrico De La Ubpc “Desembarco Del Granma” Utilizando Aviones No Tripulados, Solución De Bajo Costo Para La Agricultura Nacional. In: VII Edición de la Conferencia Científica Internacional sobre Desarrollo Agropecuario y Sostenibilidad, pp. 1–14 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

Personalised recommendations