Advertisement

A MATLAB-Based Tool for 3D Reconstruction Technologies for Indoor and Outdoor Environments

  • Kevin Jaramillo
  • David Ponce
  • David PozoEmail author
  • Luis Morales
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

This paper presents a 3D-Reconstruction MATLAB-based tool for indoor and outdoor environments using the Kinect V2, Kinect V1, RPLIDAR A1 sensors and a ZED 2K stereo camera. The 3D reconstruction tool allows to obtain the data generated by any of the sensors and create a point cloud that allows to represent an environment in three dimensions. Likewise, through this tool it is possible to manipulate the point cloud by applying axis and distances filters, as well as spatial resolution modification of the acquired data. The aim of this work is to provide the user a tool capable to obtain 3D information of several devices to facilitate its use and avoiding the need of a different software for each device. Finally, several 3D images with each sensor are tested in order to manipulate them with the tool and to get a 3D point cloud with established bounds.

Keywords

3D-Reconstruction MATLAB Kinect V2 Kinect V1 ZED 2K stereo camera 

Notes

Acknowledgment

The authors thanks to the staff of Unidad de Innovación Tecnológica (UITEC) for their support, equipment and infrastructure.

References

  1. 1.
    Cheng, Y., Wang, G.Y.: Mobile robot navigation based on lidar. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 1243–1246 (2018)Google Scholar
  2. 2.
    MoBiVAP Group Research: Reconstrucción 3D, p. 15 (2013)Google Scholar
  3. 3.
    Vogiatzis, G., Hern, C.: Practical 3D reconstruction based on photometric stereo. In: Computer, pp. 313–345 (2012)Google Scholar
  4. 4.
    Pan, Z., Tian, S., Guo, M., Zhang, J., Yu, N., Xin, Y.: Comparison of medical image 3D reconstruction rendering methods for robot-assisted surgery. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics, ICARM 2017, vol. 2018-January, pp. 94–99 (2018)Google Scholar
  5. 5.
    Bostanci, E.: 3D reconstruction of crime scenes and design considerations for an interactive investigation tool, pp. 1–9 (2015). http://arxiv.org/abs/1512.03156
  6. 6.
    Bobkov, V.A.: 3D reconstruction of underwater objects with autonomous underwater vehicle, pp. 3–7 (2017)Google Scholar
  7. 7.
    MIT: Mechanical engineers develop an intelligent co-pilot’ for cars (2012). http://news.mit.edu/2012/mechanical-engineers-develop-intelligent-car-co-pilot-0713
  8. 8.
    Ilbay, L.: Reconstrucción activa de objetos 3D mediante escaneo láser y generación de la vista por medio del software matlab, pp. 1–126 (2014)Google Scholar
  9. 9.
    Navas, D., Vargas, J., Morales, L.: The nearest object localization through 3D lidar reconstruction using an embedded system. XXVII Jornadas de Ingeniería Eléctrica y Electrónica, Escuela Politécnica Nacional 27, 32–38 (2017)Google Scholar
  10. 10.
    Cai, L., Wu, K., Fang, Q., Zheng, R.: Fast 3D modeling Chinese ancient architectures base on points cloud. In: 2010 International Conference on Computational Intelligence and Software Engineering, CiSE 2010, no. 200809128, pp. 4–6 (2010)Google Scholar
  11. 11.
    Yang, S.-C., Fan, Y.-C.: 3D building scene reconstruction based on 3D LiDAR point cloud. In: IEEE International Conference on Consumer Electronics, pp. 127–128 (2017)Google Scholar
  12. 12.
    Miao, R., Song, J., Zhu, Y.: 3D geographic scenes visualization based on WebGL. In: 2017 6th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2017 (2017)Google Scholar
  13. 13.
    Hernández, I.: métodos fotogramétricos (2015)Google Scholar
  14. 14.
    Ramírez-Pedraza, A., González-Barbosa, J.J., Ornelas-Rodríguez, F.J., García-Moreno, A.I., Salazar-Garibay, A., González-Barbosa, E.A.: Detección de Automóviles en Escenarios Urbanos Escaneados por un Lidar. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 12(2), 189–198 (2015)CrossRefGoogle Scholar
  15. 15.
    Navarro, F.: Aplicaciones de la Reconstrucción 3D: odometría visual e Integración con la realida virtual, pp. 1–64 (2017)Google Scholar
  16. 16.
    Pozo, D., Jaramillo, K., Ponce, D., Torres, A., Morales, L.: 3D reconstruction technologies for using in dangerous environments with lack of light: a comparative analysis. In: II Congreso Internacional de Sistemas Inteligentes y Nuevas Tecnologías: Tendencias Interdisciplinares en Comunicación (2019, Submitted)Google Scholar
  17. 17.
    Gupta, T., Li, H.: Indoor mapping for smart cities—an affordable approach: using kinect sensor and zed stereo camera. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8, September 2017Google Scholar
  18. 18.
    Boora, S., Sahu, B.C., Patra, D.: 3D image reconstruction from multiview images. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7, July 2017Google Scholar
  19. 19.
    Valgma, L., Daneshmand, M., Anbarjafari, G.: Iterative closest point based 3D object reconstruction using RGB-D acquisition devices. In: 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 457–460, May 2016Google Scholar
  20. 20.
    Qinghua, H., Zhaozheng, Z.: A review on real-time 3D ultrasound imaging technology. BioMed. Res. Int. 2017, 20 (2017)Google Scholar
  21. 21.
    Caminal, I., Casas, J., Royo, S.: SLAM-based 3D outdoor reconstructions from lidar data. In: 2018 International Conference on 3D Immersion (IC3D), pp. 1–8, December 2018Google Scholar
  22. 22.
    Schwarz, B.: LIDAR: mapping the world in 3D. Nat.Photon. 4(7), 429–430 (2010).  https://doi.org/10.1038/nphoton.2010.148CrossRefGoogle Scholar
  23. 23.
    Li, B., Yang, L., Xiao, J., Valde, R., Wrenn, M., Leflar, J.: Collaborative mapping and autonomous parking for multi-story parking garage. IEEE Trans. Intell. Transp. Syst. 19(5), 1629–1639 (2018)CrossRefGoogle Scholar
  24. 24.
    Lachat, E., Macher, H., Landes, T., Grussenmeyer, P.: Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10), 13070–13097 (2015)CrossRefGoogle Scholar
  25. 25.
    Lachat, E., Macher, H., Mittet, M.A., Landes, T., Grussenmeyer, P.: First experiences with kinect V2 sensor for close range 3D modelling. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 40, no. 5W4, pp. 93–100 (2015)CrossRefGoogle Scholar
  26. 26.
    Popescu, C.R., Lungu, A.: Real-time 3D reconstruction using a kinect sensor. Comput. Sci. Inf. Technol. 2(2), 95–99 (2014)Google Scholar
  27. 27.
    Wasenmuller O., Stricker D.: Comparison of kinect V1 and V2 depth images, vol. 10118, September 2017.  https://doi.org/10.1007/978-3-319-54526-4Google Scholar
  28. 28.
  29. 29.
    Kirsten, E., Inocencio, L.C., Veronez, M.R., Da Silveira, L.G., Bordin, F., Marson, F.P.: 3D data acquisition using stereo camera. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 9214–9217, July 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kevin Jaramillo
    • 1
  • David Ponce
    • 1
  • David Pozo
    • 1
    Email author
  • Luis Morales
    • 2
  1. 1.Facultad de Ingeniería y Ciencias AplicadasUniversidad de Las AméricasQuitoEcuador
  2. 2.Departamento de Automatizaciíon y Control IndustrialEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations