Advertisement

Proposal for a Support Tool for the Study of Corneal Biomechanics and Its Influence in the Human Eye

  • María Isabel CorderoEmail author
  • Roberto Coronel
  • Eduardo Pinos-Vélez
  • William Ipanque
  • Carlos Luis Chacón
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1066)

Abstract

In search of more effective methods in the diagnosis vision and reduce the risk of post-operative ectasia, this article considers the importance of the biomechanical properties of the cornea and its close relationship with the development of corneal and possible conditions diseases in the human eye. For that reason, part of the literature is the review and analysis of the methods raised to remove accurate information from medical equipment, especially in the equipment Oculus Corvis and ORA from the Clinic “Santa Lucia” in the city of Quito. The corneal indices derived from these instruments can measure biomechanical parameters, but that is not accurate because of features such as geometry or thickness of the central corneal. The Young’s modulus corresponds to the elasticity of the corneal tissue. In addition, it is an important biomechanical feature that states different solutions for their extraction in vitro or in vivo through the use of numerical methods and/or modeling of complex systems of equations to simulate the real corneal tissue. There is also the obtaining of the elasticity of the cornea through processes of images of the human eye, which shows the action of the cornea at the time of using the tonometer. As a result, it demonstrate, in some cases, that the Young’s modulus relates only to the intraocular pressure, but also in other cases, it changes due to the increase of other factors such as age of people, corneal resistance, the central cornea thickness, etc.

Keywords

Corneal biomechanics Young’s modulus Intraocular pressure Biomechanical parameters Central corneal thickness 

References

  1. 1.
    Calabuig Goena, M.: Estudio de la variación del grosor de la cornea por capas en la facoemulsificación de la catarata mediante tomografía de coherencia óptica del dominio espectral, Universidad de Valladolid (2015)Google Scholar
  2. 2.
    Del Buey Sayas Maria de los Angeles y Peris Martines Cristina: Biomecánica y Arquitectura Corneal, Editorial S.I. Elsevier (2014)Google Scholar
  3. 3.
    Del Buey Sayas Maria de los Angeles: Estudio de la biomecánica corneal: relación entre las propiedades biomecánicas corneales, determinadas mediante el Analizador de Respuesta Ocular ORA y la patología ocular., Universidad de Zaragoza, Zaragoza (2013)Google Scholar
  4. 4.
    Gatzioufas, Z., Seitz, B.: Determination of corneal biomechanical properties in vivo: a review. Mater. Sci. Technol. 31, 188–196 (2015)CrossRefGoogle Scholar
  5. 5.
    Hon, Y., Lam, A.K.C.: Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom. Vis. Sci. 90, E1–E8 (2013)CrossRefGoogle Scholar
  6. 6.
    Dorronsoro, C., Pascual, D., Perez-Merino, P., Kling, S., Marcos, S.: Biomed. Opt. Express 3, 473–487 (2012)CrossRefGoogle Scholar
  7. 7.
    Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 31, 156–162 (2005)CrossRefGoogle Scholar
  8. 8.
    Tanter, M., Touboul, D., Gennisson, J.L., Bercoff, J., Fink, M.: High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans. Med. Imaging 28, 1881–1893 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Tian, L., Huang, Y., Huang, Y., Zheng, Y.: Assessment of corneal biomechanical properties with inflation test using optical coherence tomography. Ann. Biomed. Eng. 46(2), 247–256 (2018)CrossRefGoogle Scholar
  10. 10.
    Shih, P.-J., et al.: Estimation of the corneal Young’s modulus in Vivo based on a fluid- filled spherical-shell model with scheimpflug imaging. J. Ophthalmol. 2017, 1–11 (2017)CrossRefGoogle Scholar
  11. 11.
    Vellara, H.R., Patel, D.V.: Biomechanical properties of the keratoconic cornea: a review. Clin. Exp. Optom. 98(1), 31–38 (2015)CrossRefGoogle Scholar
  12. 12.
    Matteoli, S., Virga, A., Paladini, I., Mencucci, R., Corvi, A.: Investigation into the elastic properties of ex vivo porcine corneas subjected to inflation test after cross linking treatment. J. Appl. Biomater. Funct. Mater. 14(2), 163–170 (2016)Google Scholar
  13. 13.
    Cao, H.-J., Huang, C.-J., Shih, P.-J., Wang, I.-J., Yen, J.-Y.: A method of measuring corneal Young’s modulus. In: Goh, J., Lim, C.T. (eds.) 7th WACBE World Congress on Bioengineering 2015, vol. 52, pp. 47–50. Springer, Cham (2015)CrossRefGoogle Scholar
  14. 14.
    Joda, A.A., Shervin, M.M.S., Kook, D., Elsheikh, A.: Development and validation of a correction equation for Corvis tonometry. Comput. Methods Biomech. Biomed. Eng. 19(9), 943–953 (2016)CrossRefGoogle Scholar
  15. 15.
    Elsheikh, A., Wang, D.: Numerical modelling of corneal biomechanical behaviour. Comput. Methods Biomech. Biomed. Eng. 10(2), 85–95 (2007)CrossRefGoogle Scholar
  16. 16.
    Kohlhaas, M.: Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch. Ophthalmol. 124(4), 471 (2006)CrossRefGoogle Scholar
  17. 17.
    Han, Z., et al.: Air puff induced corneal vibrations: theoretical simulations and clinical observations. J. Refract. Surg. 30(3), 208–213 (2014)CrossRefGoogle Scholar
  18. 18.
    Wang, L.-K., Tian, L., Zheng, Y.-P.: Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes. J. Biophotonics 9(5), 454–463 (2016)CrossRefGoogle Scholar
  19. 19.
    Kerautret, J., Colin, J., Touboul, D., Roberts, C.: Biomechanical characteristics of the ectatic cornea. J. Cataract. Refract. Surg. 34(3), 510–513 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • María Isabel Cordero
    • 1
    Email author
  • Roberto Coronel
    • 1
  • Eduardo Pinos-Vélez
    • 2
  • William Ipanque
    • 3
  • Carlos Luis Chacón
    • 4
  1. 1.GIIATA, Research Group on Artificial Intelligence and Assistive TechnologiesUniversidad Politécnica SalesianaCuencaEcuador
  2. 2.GIIATA, Research Group on Artificial Intelligence and Assistive Technologies and GIIBResearch Group on Biomedical Engineering at Universidad Politécnica SalesianaCuencaEcuador
  3. 3.PhD of Engineering Computer Science and ControlUniversidad de PiuraPiuraPeru
  4. 4.Board Member of the Ecuadorian Society of Glaucoma, Clinical Santa LucíaQuitoEcuador

Personalised recommendations