Automated Nonlinear Control Structure Design by Domain of Attraction Maximization with Eigenvalue and Frequency Domain Specifications
Abstract
This work proposes a new method for nonlinear control structure design for nonlinear dynamical systems by grammatical evolution. The optimization is based on a novel fitness function which implements three different design objectives. First, the closed loop eigenvalues of the linearized system dynamics are restricted to be located in a predefined region of the complex plane. Second, design specifications on the frequency magnitude of the sensitivity transfer functions of the linearized system dynamics are imposed. Third, the estimated domain of attraction of the nonlinear closed loop system dynamics is maximized by evaluating a quadratic Lyapunov function, obtained by the solution of the Lyapunov equation, with a Monte-Carlo sampling algorithm. Additionally, a general formula for the centroid of a design region for pole placement is derived analytically and embedded in the optimization framework. The generated controllers are evaluated on a common, nonlinear benchmark system. It is shown that the proposed method can efficiently generate control laws which meet the imposed design specifications on the closed loop system while maximizing the domain of attraction.
Keywords
Nonlinear control structure design Lyapunov equation Grammatical evolution Robust control Domain of attraction maximization Frequency domain specifications Stability centroidReferences
- 1.Ackermann J (1980) Parameter space design of robust control systems. IEEE Trans Autom Control 25(6):1058–1072zbMATHCrossRefGoogle Scholar
- 2.Ackermann J, Blue P, Bünte T, Güvenc L, Kaesbauer D, Kordt M, Muhler M, Odenthal D (2002) Robust control: the parameter space approach. Springer Science & Business Media, HeidelbergCrossRefGoogle Scholar
- 3.Artstein Z (1983) Stabilization with relaxed controls. Nonlinear Anal TMA 7(11):1163–1173MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Backus JW (1959) The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. Proceedings of the international conference on information processing (1959)Google Scholar
- 5.Banks C (2002) Searching for Lyapunov functions using genetic programming. Virginia Polytech Institute and State University, Blacksburg, Virginia. http://www.aerojockey.com/files/lyapunovgp.pdf. Accessed 24 May 2018
- 6.Bartels RH, Stewart G (1972) Solution of the matrix equation \(AX+ XB= C\): algorithm 432. Commun ACM 15(9):820–826zbMATHCrossRefGoogle Scholar
- 7.Blackwell C (1984) On obtaining the coefficients of the output transfer function from a state-space model and an output model of a linear constant coefficient system. IEEE Trans Autom Control 29(12):1122–1125MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Bobiti R, Lazar M (2018) Automated sampling-based stability verification and DOA estimation for nonlinear systems. IEEE Trans Autom Control 63(11):3659–3674MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Brayton R, Tong C (1979) Stability of dynamical systems: a constructive approach. IEEE Trans Circuits Syst 26(4):224–234MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Bünte T (2000) Mapping of Nyquist/Popov theta-stability margins into parameter space. IFAC Proc Vol 33(14):519–524CrossRefGoogle Scholar
- 11.Castro LN, De Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer Science & Business Media, LondonzbMATHGoogle Scholar
- 12.Chen P, Lu YZ (2011) Automatic design of robust optimal controller for interval plants using genetic programming and Kharitonov theorem. Int J Comput Intell Syst 4(5):826–836CrossRefGoogle Scholar
- 13.Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404CrossRefGoogle Scholar
- 14.Chesi G (2005) Domain of attraction: estimates for non-polynomial systems via LMIs. In: Proceedings of 16th IFAC world congress, Prague, Czech RepublicGoogle Scholar
- 15.Chilali M, Gahinet P (1996) \(H_{\infty }\) design with pole placement constraints: an LMI approach. IEEE Trans Autom Control 41(3):358–367MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybernetics) 26(1):29–41CrossRefGoogle Scholar
- 17.Doyle J, Stein G (1981) Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans Autom Control 26(1):4–16zbMATHCrossRefGoogle Scholar
- 18.Doyle JC, Francis BA, Tannenbaum AR (2013) Feedback control theory. Courier CorporationGoogle Scholar
- 19.Duriez T, Brunton SL, Noack BR (2017) Machine learning control-taming nonlinear dynamics and turbulence. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
- 20.Freeman R, Kokotovic PV (2008) Robust nonlinear control design: state-space and Lyapunov techniques. Springer Science & Business Media, BaselzbMATHGoogle Scholar
- 21.Gholaminezhad I, Jamali A, Assimi H (2014) Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system. In: 2014 second RSI/ISM international conference on robotics and mechatronics (ICRoM). IEEE, pp 041–046Google Scholar
- 22.Giesl P (2007) Construction of global Lyapunov functions using radial basisfunctions, vol 1904. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
- 23.Giesl P, Hafstein S (2015) Review on computational methods for Lyapunov functions. Discrete Continuous Dyn Syst Ser B 20(8):2291–2337MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Glassman E, Desbiens AL, Tobenkin M, Cutkosky M, Tedrake R (2012) Region of attraction estimation for a perching aircraft: a Lyapunov method exploiting barrier certificates. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2235–2242Google Scholar
- 25.Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Glover FW, Kochenberger GA (2006) Handbook of metaheuristics, vol 57. Springer Science & Business Media, HeidelbergzbMATHGoogle Scholar
- 27.Graichen K, Kugi A, Petit N, Chaplais F (2010) Handling constraints in optimal control with saturation functions and system extension. Syst Control Lett 59(11):671–679MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Grosman B, Lewin DR (2005) Automatic generation of Lyapunov functions using genetic programming. IFAC Proc Vol 38(1):75–80CrossRefGoogle Scholar
- 29.Hafstein SF (2007) An algorithm for constructing Lyapunov functions. Electron J Differ Eq 2007:101zbMATHGoogle Scholar
- 30.Haupt RL, Haupt SE (1998) Practical genetic algorithms, vol 2. Wiley, New YorkzbMATHGoogle Scholar
- 31.Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, OxfordzbMATHGoogle Scholar
- 32.Hosen MA, Khosravi A, Nahavandi S, Creighton D (2015) Improving the quality of prediction intervals through optimal aggregation. IEEE Trans Industr Electron 62(7):4420–4429CrossRefGoogle Scholar
- 33.Isidori A (1989) Nonlinear control systems, 2nd edn. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
- 34.Johansson M, Rantzer A (1997) Computation of piecewise quadratic Lyapunov functions for hybrid systems. In: 1997 european control conference (ECC). IEEE, pp 2005–2010Google Scholar
- 35.Jones M, Mohammadi H, Peet MM (2017) Estimating the region of attraction using polynomial optimization: a converse Lyapunov result. In: 2017 IEEE 56th annual conference on decision and control (CDC). IEEE, pp 1796–1802Google Scholar
- 36.Kapinski J, Deshmukh JV, Sankaranarayanan S, Arechiga N (2014) Simulation-guided Lyapunov analysis for hybrid dynamical systems. In: Proceedings of the 17th international conference on Hybrid systems: computation and control. ACM, pp 133–142Google Scholar
- 37.Khalil HK (1996) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
- 38.Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, CambridgezbMATHGoogle Scholar
- 40.Koza JR, Keane MA, Yu J, Bennett FH, Mydlowec W, Stiffelman O (1999) Automatic synthesis of both the topology and parameters for a robust controller for a nonminimal phase plant and a three-lag plant by means of genetic programming. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol 5, IEEE, pp 5292–5300Google Scholar
- 41.Li C, Ryoo CS, Li N, Cao L (2009) Estimating the domain of attraction via moment matrices. Bull Korean Math Soc 46(6):1237–1248MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Lyapunov AM (1992) The general problem of the stability of motion. Taylor & Francis, London. English translation by A.T. Fuller, original work published in Russian in 1892Google Scholar
- 43.Maciejowski JM (1989) Multivariable feedback design. Electronic systems engineering series, vol 6. Addison-Wesley, Wokingham, pp 85–90Google Scholar
- 44.Materassi D, Salapaka MV (2009) Attraction domain estimates combining Lyapunov functions. In: American control conference, ACC 2009. IEEE, pp 4007–4012Google Scholar
- 45.Matthews ML, Williams C (2012) Region of attraction estimation of biological continuous boolean models. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 1700–1705Google Scholar
- 46.McGough JS, Christianson AW, Hoover RC (2010) Symbolic computation of Lyapunov functions using evolutionary algorithms. In: Proceedings of the 12th IASTED international conference, vol 15, pp 508–515Google Scholar
- 47.Mitchell M (1998) An introduction to genetic algorithms. MIT Press, CambridgezbMATHGoogle Scholar
- 48.Najafi E, Babuška R, Lopes GA (2016) A fast sampling method for estimating the domain of attraction. Nonlinear Dyn 86(2):823–834MathSciNetCrossRefGoogle Scholar
- 49.Naur P, Backus JW, Bauer FL, Green J, Katz, C., McCarthy J, Perlis AJ (1969) Revised report on the algorithmic language. In: ALGOL 60. SpringerGoogle Scholar
- 50.Neath MJ, Swain AK, Madawala UK, Thrimawithana DJ (2014) An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans Power Electron 29(3):1523–1531CrossRefGoogle Scholar
- 51.Odenthal D, Blue P (2000) Mapping of frequency response performance specifications into parameter space. IFAC Proc Vol 33(14):531–536CrossRefGoogle Scholar
- 52.O’Neill M, Ryan C (1999) Under the hood of grammatical evolution. In: Proceedings of the 1st annual conference on genetic and evolutionary computation, vol 2. Morgan Kaufmann Publishers Inc., pp 1143–1148Google Scholar
- 53.Poli R, Langdon WB, McPhee NF (2018) A field guide to genetic programming. Published via http://lulu.com, http://www.gp-field-guide.org.uk. (Accessed 24 May 2018), (With contributions by J. R. Koza)
- 54.Prajna S, Papachristodoulou A, Parrilo PA (2002) Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE conference on decision and control, vol 1. IEEE, pp 741–746Google Scholar
- 55.Precup RE, Sabau MC, Petriu EM (2015) Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems. Appl Soft Comput 27:575–589CrossRefGoogle Scholar
- 56.Rall LB (1981) Automatic differentiation: techniques and applications. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
- 57.Reichensdörfer E, Odenthal D, Wollherr D (2017) Grammatical evolution of robust controller structures using Wilson scoring and criticality ranking. In: European conference on genetic programming. Springer, pp 194–209Google Scholar
- 58.Reichensdörfer E, Odenthal D, Wollherr D (2018) Nonlinear control structure design using grammatical evolution and Lyapunov equation based optimization. In: Proceedings of the 15th international conference on informatics in control, automation and robotics - Volume 1: ICINCO. INSTICC, SciTePress, pp 55–65Google Scholar
- 59.Ryan C, Collins J, Neill MO (1988) Grammatical evolution: evolving programs for an arbitrary language. In: European conference on genetic programming. Springer, pp 83–96Google Scholar
- 60.Saadat J, Moallem P, Koofigar H (2017) Training echo state neural network using harmony search algorithm. Int J Artif Intell TM 15(1):163–179Google Scholar
- 61.Saleme A, Tibken B, Warthenpfuhl SA, Selbach C (2011) Estimation of the domain of attraction for non-polynomial systems: a novel method. IFAC Proc Vol 44(1):10976–10981CrossRefGoogle Scholar
- 62.Shimooka H, Fujimoto Y (2000) Generating robust control equations with genetic programming for control of a rolling inverted pendulum. In: Proceedings of the 2nd annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc., pp 491–495Google Scholar
- 63.Singh R, Kuchhal P, Choudhury S, Gehlot A (2015) Implementation and evaluation of heating system using PID with genetic algorithm. Indian J Sci Technol 8(5):413CrossRefGoogle Scholar
- 64.Sontag ED (1983) A Lyapunov-like characterization of asymptotic controllability. SIAM J Control Optim 21(3):462–471MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Szczepanski R, Tarczewski T, Erwinski K, Grzesiak LM (2018) Comparison of constraint-handling techniques used in artificial bee colony algorithm for auto-tuning of state feedback speed controller for PMSM. In: Proceedings of the 15th international conference on informatics in control, automation and robotics - Volume 1: ICINCO. INSTICC, SciTePress, pp 269–276Google Scholar
- 66.Tibken B (2000) Estimation of the domain of attraction for polynomial systems via LMIs. In: Proceedings of the 39th IEEE conference on decision and control, vol 4. IEEE, pp 3860–3864Google Scholar
- 67.Verdier C, Mazo Jr. M (2017) Formal controller synthesis via genetic programming. IFAC-PapersOnLine 50(1):7205–7210Google Scholar
- 68.Vrkalovic S, Teban TA, Borlea ID (2017) Stable Takagi-Sugeno fuzzy control designed by optimization. Int J Artif Intell 15:17–29Google Scholar
- 69.Warthenpfuhl S, Tibken B, Mayer S (2010) An interval arithmetic approach for the estimation of the domain of attraction. In: 2010 IEEE international symposium on computer-aided control system design (CACSD). IEEE, pp 1999–2004Google Scholar
- 70.Zhou K, Doyle JC, Glover K et al (1996) Robust and optimal control, vol 40. Prentice Hall, New JerseyzbMATHGoogle Scholar
- 71.Zubov VI (1964) Methods of A.M. Lyapunov and their Application. P. NoordhoffGoogle Scholar