Development of Geomechanical Model of the South Segment of Central Sakhalin Fault Zone

  • Pavel KamenevEmail author
  • Leonid Bogomolov
  • Andrey Zabolotin
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


The geomechanical model has been developed. It describes the spatial distribution of stresses and strains and their temporal evolution for the southern part of the Central Sakhalin Fault. The boundaries of the model are the faces of a parallelepiped with sides of 150 km in the meridional direction, 60 km in the sublatitudinal direction and a depth of 30 km. Geographically, the model is confined to coordinates within 46.4°–47.4°N and 142.2°–142.8°E, the paper describes the main stages of creating a geomechanical model. The initial field data for the model are taken from the results of the deep seismic sounding, well logging, measurements with the GPS/GLONASS positioning, and seismological data. The model is divided into 8 layers in depth with different densities from 1.9 to 2.78 g/cm3, Young’s modulus from 1.2 to 44.9 GPa, and Poisson’s ratio from 0.27 to 0.28. To estimate the details of deformation of the selected block of Central Sakhalin fault zone, the surface has been divided into 9 blocks with different strain rates from 0.5 to 2.3 mm/year. Stress values change with increasing depth in the range of 50 to 1500 MPa for σ1, 30 to 1000 MPa for σ2, and from 20 to 600 MPa for σ3. The first results on the distribution of the stress-strain state in the fault area have been obtained.


Geomechanical model Stress Strain Fault zone 


  1. 1.
    Zakupin, A.S., Kamenev, P.A., Voronina, T.E., Boginskaya, N.V.: The estimation of seismic hazard in south part of Sakhalin for 2018 year (based on preliminary catalog). Geosystems Transit. Zones. 2(1), 52–56 (2018). (in Russian)CrossRefGoogle Scholar
  2. 2.
    Makarov, E.O., Firstov, P.P., Kostylev, D.V., Rylov, E.S., Dudchenko, I.P.: First results of subsurface radon monitoring by network of points, operating in the test mode on the south of Sakhalin island. Vestnik KRAUNC. Fiz.-Mat. Nauki. 25(5), 99–114 (2018). (in Russian)
  3. 3.
    Kuchai, V.K.: The modern orogeny structure south part of Sakhalin Island. Russ. J. Pac. Geol. 6(1), 50–57 (1987). (in Russian)Google Scholar
  4. 4.
    Bulgakov, R.F., Ivaschenko, A.I., Kim, Ch.U., Sergeev, K.F., Strel’tsov, M.I., Kozhurin, A.I., Besstrashnov, V.M., Strom, A.L., Suzuki, Y., Tsutsumi, H., Watanabe, M., Ueki, T., Shimamoto, T., Okumura, K., Goto, H., Kariya, Y.: Active faults in northeastern Sakhalin. Geotectonics 36(3), 227 (2002)Google Scholar
  5. 5.
    Kamenev, P.A., Bogomolov, L.M., Valetov, S.A.: On estimatioin in situ of geomechanic parameters of sedimentary rocks from logging. Russ. J. Pac. Geol. 31(6), 109–114 (2012). (in Russian)Google Scholar
  6. 6.
    Prytkov, A.S., Vasilenko, N.F.: Earth surface deformation of the Sakhalin Island from GPS data. Geodyn. Tectonophysi. 9, 503–514 (2018). Scholar
  7. 7.
    Livshits, M.H.: Deep structure of Sakhalin based on geophysical data. Geophys. Dig. 24, 16–25 (1972). (in Russian)Google Scholar
  8. 8.
    Voeikova, O.A., Nesmeyanov, S.A., Serebryakova, L.I.: Neotectonics and Active Faults of Sakhalin. Nauka, Moscow, 187 p. (2007). (in Russian)Google Scholar
  9. 9.
    The 2 August, 2007 Nevelsk Earthquake and Tsunami, Sakhalin Island. In: Levin, B.W., Tikhonov, I.N. (eds.), Yanus-K, Moscow (2009). (in Russian)Google Scholar
  10. 10.
    Gardner, G.H., Gardner, L.W., Gregory, A.R.: Formation velocity and density—The diagnostic basis for stratigraphic traps. Geophysics 39(6), 2085–2095 (1974)Google Scholar
  11. 11.
    Kamenev, P.A., Usoltseva, O.M., Tsoi, P.A., Semenov, V.N., Sivolap, B.B.: Laboratory research of geomechanical parameters of sedimentary rocks massifs in the South Sakhalin. Geosystems Transit. Zones 1(1), 30–36 (2017). (in Russian)CrossRefGoogle Scholar
  12. 12.
    Kamenev, P.A., Zlobin, T.K.: Distribution of stress in lithosphere of Okhotsk sea area. In: Tectonics, Deep Structure and Geodinamics of East Asia, pp. 232–237. ITG, Khabarovsk (2003). (in Russian)Google Scholar
  13. 13.
    Kamenev, P.A., Bogomolov, L.M., Zakupin, A.S.: On the stress state of the Sakhalin crust according to the data of drilling deep boreholes. Russ. J. Pac. Geol. 11(1), 25–33 (2017). Scholar
  14. 14.
    Baryshnikov, V.D., Kurlenya, M.V., Leont’ev, A.V., Pirlya, K.V.: Stress-strain state of the Nikolaev deposit. J. Min. Sci. 18(2), 3–12 (1982). (in Russian)Google Scholar
  15. 15.
    Ali, A.H.A., Marty, S., Esa, R., Ramamurty, R., Braun, T., Stuffer, T.: Advanced Hydraulic Fracturing Using Geomechanical Modeling and Rock Mechanics—An Engineered Integrated Approach. Oilfield Review Autumn (2002). (in Russian)
  16. 16.
    Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, K., Reinecker, B., Reiter, J., Tingay, K.M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L., Zoback, M.D.: The world stress map database release 2016: crustal stress pattern across scales. Tectonophysics 744, 484-498 (2018).
  17. 17.
    Pijush, P., Zoback, M.: Wellbore-stability study for the SAFOD borehole through the San Andreas fault. SPE Drill. Complet. 12, 394–408 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pavel Kamenev
    • 1
    Email author
  • Leonid Bogomolov
    • 1
  • Andrey Zabolotin
    • 1
  1. 1.Institute of Marine Geology and Geophysics FEB RASYuzhno-SakhalinskRussia

Personalised recommendations