Dust Particle Dynamics in Convective Vortices Near the Surface of the Earth: Comparison with Mars

  • Yulia IzvekovaEmail author
  • Sergey Popel
  • Oleg Izvekov
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


We study dynamics of dust particles in convective vortices near the surface of Earth and Mars. Dust vortices called dust devils appear over the hot surface as a result of convective instability and are frequent phenomena for both planets. We use similarity theory to find similar scales and velocities for vortices on both planets. Collisions and friction between dust particles in a vortex lead to charging of dust particles due to triboelectric effect. As a result small particles acquire negative charges and large particles become positively charged. This leads to spatial charge separation in an upward flux and electric field generation. Electric fields in terrestrial dust vortices have been repeatedly measured. We show the model of electric field generation in a vortex and study the dynamics of dust with taking into account the electric field. We discuss the conditions under which the breakdown values of the electric field in the Martian atmosphere can be achieved. Probability of lightning phenomena in dust events on Mars and consequences of that are discussed.


Atmospheric dust Dust devils Dust electrification 



The work is supported by the Russian Science Foundation (project no. 18-72-00119).


  1. 1.
    Farrell, W.M., Smith, P.H., Delory, G.T., Hillard, G.B., Marshall, J.R., Catling, D., Tratt, D.M., Renno, N., Desch, M.D., Cummer, S.A., Houser, J.G., Johnson B.: Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. 109(E03004) (2004)Google Scholar
  2. 2.
    Delory, G.T., Farrell, W.M., Atreya, S.K., Renno, N.O., Wong, A.-S., Cummer, S.A., Sentman, D.D., Marshall, J.R., Rafkin, S.C.R., Catling, D.C.: Oxidant enhancement in Martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6(3), 451–462 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Melnik, O., Parrot, M.: Electrostatic discharge in Martian dust storms. J. Geophys. Res. 103(A12), 29107–29117 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Zhai, Y., Cummer, S.A., Farrell, W.M.: Quasi-electrostatic field analysis and simulation of Martian and terrestrial dust devils. J. Geophys. Res. Planets 111(E06016), 1–8 (2006)Google Scholar
  5. 5.
    Renno, N.O., Wong, A.S., Atreya, S.K., de Pater, I., Roos-Serote, M.: Electrical discharges and broadband radio emission by Martian dust devils and dust storms. Geophys. Res. Lett. 30(22), 1–4 (2003)Google Scholar
  6. 6.
    Bazelyan, E.M., Raizer, YuP: Lightning Physics and Lightning Protection. IOP, Bristol (2000)CrossRefGoogle Scholar
  7. 7.
    Izvekova, Y.N., Popel, S.I., Izvekov O.Y.: On calculation of vortex parameters in near-surface atmosphere of mars. Solar Syst. Res. 53(5) (2019) [in press]Google Scholar
  8. 8.
    Guhman, A.A.: Introduction to similarity theory. Vysshaya Shkola, Moscow (1973) [in Russian]Google Scholar
  9. 9.
    Balme, M., Greeley, R.: Dust devils on earth and mars. Rev. Geophys. 44(RG3003), 1–22 (2006)Google Scholar
  10. 10.
    Ryan, J.A., Lucich, R.D.: Possible dust devils, vortices on Mars. J. Geophys. Res. Ocean. 88(C15), 11005–11011 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Lacks, D.J., Levandovsky, A.: Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65(2), 107–112 (2007)CrossRefGoogle Scholar
  12. 12.
    Farrell, W.M., Delory, G.T., Cummer, S.A., Marshall, J.R.: A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30(20) (2003)CrossRefGoogle Scholar
  13. 13.
    Izvekova, Y.N., Popel, S.I.: Plasma effects in dust devils near the Martian surface. Plasma Phys. Rep. 43(12), 1172–1178 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Izvekova, Y.N., Popel, S.I.: Nonlinear wave structures and plasma—dust effects in the earth’s atmosphere. Plasma Phys. Rep. 44(9), 835–839 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Gurnett, D.A., Huff, R.L., Morgan, D.D., Persoon, A.M., Averkamp, T.F., Kirchner, D.L., Duru, F., Akalina, F., Kopf, A.J., Nielsen, E., Safaeinili, A., Plaut, J.J., Picardi, G.: An overview of radar soundings of the Martian ionosphere from the Mars express spacecraft. Adv. Space Res. 41(9), 1335–1346 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Ruf, C., Renno, N.O., Kok, J.F., Bandelier, E., Sander, M.J., Gross, S., Skjerve, L., Cantor, B.: Emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett. 36(L13202), 1–6 (2009)Google Scholar
  17. 17.
    Besedina, Y.N., Popel, S.I.: Nano-and microscale particles and global electromagnetic resonances in the Earth-ionosphere cavity. Plasma Phys. Rep. 33(2), 138–145 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Bliokh, P.V., Nikolaenko, A.P., Filippov, YuF: Global electromagnetic resonances in the earth-ionosphere cavity. Naukova Dumka, Kiev (1977) (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.LLC “Oil &Gas Center MIPT”DolgoprudnyRussia

Personalised recommendations