Summary and Outlook

  • Abhijeet Alase
Part of the Springer Theses book series (Springer Theses)


The key findings of the previous chapters are summarized, along with possible directions of future research.


Topological insulators Topological superconductors Symmetry-protected topological phases Bulk-boundary correspondence Bloch’s theorem Boundary conditions Wiener–Hopf factorization 


  1. 1.
    D. Vanderbilt, R. Resta, Quantum electrostatics of insulators: polarization, Wannier functions, and electric fields. Contemp. Concepts Condens. Matter Sci. 2, 139–163 (2006). CrossRefGoogle Scholar
  2. 2.
    L. Gor’kov, Surface and superconductivity, in Recent Progress in Many-body Theories, ed. by J.A. Carlson, G. Ortiz (2006), pp. 3–7Google Scholar
  3. 3.
    L. Isaev, G. Ortiz, I. Vekhter, Tunable unconventional Kondo effect on topological insulator surfaces. Phys. Rev. B 92, 205423 (2015). ADSCrossRefGoogle Scholar
  4. 4.
    K. Binder, D. Landau, Critical phenomena at surfaces. Phys. A Stat. Mech. Appl. 163, 17–30 (1990). CrossRefGoogle Scholar
  5. 5.
    W.A. Benalcazar, B.A. Bernevig, T.L. Hughes, Quantized electric multipole insulators. Science 357, 61–66 (2017). ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Hashimoto, X. Wu, T. Kimura, Edge states at an intersection of edges of a topological material. Phys. Rev. B 95, 165443 (2017). ADSCrossRefGoogle Scholar
  7. 7.
    F.K. Kunst, G. van Miert, E.J. Bergholtz, Lattice models with exactly solvable topological hinge and corner states. Phys. Rev. B 97, 241405 (2018). ADSCrossRefGoogle Scholar
  8. 8.
    S. Hegde, V. Shivamoggi, S. Vishveshwara, D. Sen, Quench dynamics and parity blocking in Majorana wires. New J. Phys. 17, 053036 (2015). ADSCrossRefGoogle Scholar
  9. 9.
    T. Kitagawa, E. Berg, M. Rudner, E. Demler, Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010). ADSCrossRefGoogle Scholar
  10. 10.
    A. Poudel, G. Ortiz, L. Viola, Dynamical generation of Floquet Majorana flat bands in s-wave superconductors. Europhys. Lett. 110, 17004 (2015). ADSCrossRefGoogle Scholar
  11. 11.
    T. Prosen, Third quantization: a general method to solve master equations for quadratic open Fermi systems. New J. Phys. 10, 043026 (2008). ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Diehl, E. Rico, M.A. Baranov, P. Zoller, Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971 (2011). CrossRefGoogle Scholar
  13. 13.
    I. Mandal, Exceptional points for chiral Majorana fermions in arbitrary dimensions. Europhys. Lett. 110, 67005 (2015). ADSCrossRefGoogle Scholar
  14. 14.
    A. Tayebi, T.N. Hoatson, J. Wang, V. Zelevinsky, Environment-protected solid-state-based distributed charge qubit. Phys. Rev. B 94, 235150 (2016). ADSCrossRefGoogle Scholar
  15. 15.
    D. Leykam, S. Flach, Y.D. Chong, Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017). ADSCrossRefGoogle Scholar
  16. 16.
    M. Gluza, C. Krumnow, M. Friesdorf, C. Gogolin, J. Eisert, Equilibration via gaussification in fermionic lattice systems. Phys. Rev. Lett. 117, 190602 (2016). ADSCrossRefGoogle Scholar
  17. 17.
    I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 42, 153001 (2009). ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Giorgadze, G. Khimshiashvili, Factorization of loops in loop groups. Bull. Georgian Natl. Acad. Sci. 5, 35 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhijeet Alase
    • 1
  1. 1.Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryCanada

Personalised recommendations