Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter pp 191-198 | Cite as
Summary and Outlook
Chapter
First Online:
Abstract
The key findings of the previous chapters are summarized, along with possible directions of future research.
Keywords
Topological insulators Topological superconductors Symmetry-protected topological phases Bulk-boundary correspondence Bloch’s theorem Boundary conditions Wiener–Hopf factorizationReferences
- 1.D. Vanderbilt, R. Resta, Quantum electrostatics of insulators: polarization, Wannier functions, and electric fields. Contemp. Concepts Condens. Matter Sci. 2, 139–163 (2006). https://doi.org/10.1016/S1572-0934(06)02005-1 CrossRefGoogle Scholar
- 2.L. Gor’kov, Surface and superconductivity, in Recent Progress in Many-body Theories, ed. by J.A. Carlson, G. Ortiz (2006), pp. 3–7Google Scholar
- 3.L. Isaev, G. Ortiz, I. Vekhter, Tunable unconventional Kondo effect on topological insulator surfaces. Phys. Rev. B 92, 205423 (2015). https://doi.org/10.1103/PhysRevB.92.205423 ADSCrossRefGoogle Scholar
- 4.K. Binder, D. Landau, Critical phenomena at surfaces. Phys. A Stat. Mech. Appl. 163, 17–30 (1990). https://doi.org/10.1016/0378-4371(90)90311-F CrossRefGoogle Scholar
- 5.W.A. Benalcazar, B.A. Bernevig, T.L. Hughes, Quantized electric multipole insulators. Science 357, 61–66 (2017). https://doi.org/10.1126/science.aah6442 ADSMathSciNetCrossRefGoogle Scholar
- 6.K. Hashimoto, X. Wu, T. Kimura, Edge states at an intersection of edges of a topological material. Phys. Rev. B 95, 165443 (2017). https://doi.org/10.1103/PhysRevB.95.165443 ADSCrossRefGoogle Scholar
- 7.F.K. Kunst, G. van Miert, E.J. Bergholtz, Lattice models with exactly solvable topological hinge and corner states. Phys. Rev. B 97, 241405 (2018). https://doi.org/10.1103/PhysRevB.97.241405 ADSCrossRefGoogle Scholar
- 8.S. Hegde, V. Shivamoggi, S. Vishveshwara, D. Sen, Quench dynamics and parity blocking in Majorana wires. New J. Phys. 17, 053036 (2015). https://doi.org/10.1088/1367-2630/17/5/053036 ADSCrossRefGoogle Scholar
- 9.T. Kitagawa, E. Berg, M. Rudner, E. Demler, Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010). https://doi.org/10.1103/PhysRevB.82.235114 ADSCrossRefGoogle Scholar
- 10.A. Poudel, G. Ortiz, L. Viola, Dynamical generation of Floquet Majorana flat bands in s-wave superconductors. Europhys. Lett. 110, 17004 (2015). https://doi.org/10.1209/0295-5075/110/17004 ADSCrossRefGoogle Scholar
- 11.T. Prosen, Third quantization: a general method to solve master equations for quadratic open Fermi systems. New J. Phys. 10, 043026 (2008). https://doi.org/10.1088/1367-2630/10/4/043026 ADSMathSciNetCrossRefGoogle Scholar
- 12.S. Diehl, E. Rico, M.A. Baranov, P. Zoller, Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971 (2011). https://doi.org/10.1038/nphys2106 CrossRefGoogle Scholar
- 13.I. Mandal, Exceptional points for chiral Majorana fermions in arbitrary dimensions. Europhys. Lett. 110, 67005 (2015). https://doi.org/10.1209/0295-5075/110/67005 ADSCrossRefGoogle Scholar
- 14.A. Tayebi, T.N. Hoatson, J. Wang, V. Zelevinsky, Environment-protected solid-state-based distributed charge qubit. Phys. Rev. B 94, 235150 (2016). https://doi.org/10.1103/PhysRevB.94.235150 ADSCrossRefGoogle Scholar
- 15.D. Leykam, S. Flach, Y.D. Chong, Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017). https://doi.org/10.1103/PhysRevB.96.064305 ADSCrossRefGoogle Scholar
- 16.M. Gluza, C. Krumnow, M. Friesdorf, C. Gogolin, J. Eisert, Equilibration via gaussification in fermionic lattice systems. Phys. Rev. Lett. 117, 190602 (2016). https://doi.org/10.1103/PhysRevLett.117.190602 ADSCrossRefGoogle Scholar
- 17.I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 42, 153001 (2009). https://doi.org/10.1088/1751-8113/42/15/153001 ADSMathSciNetCrossRefGoogle Scholar
- 18.G. Giorgadze, G. Khimshiashvili, Factorization of loops in loop groups. Bull. Georgian Natl. Acad. Sci. 5, 35 (2011)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019