Nanoparticles and Their Role in Bioenergy Production

  • Amandeep Brar
  • Manish Kumar
  • Vivekanand Vivekanand
  • Nidhi PareekEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


With the advent of industrialization and globalization, the consumption of energy sources has reached a pinnacle from where the great minds have apprehension about sustainability. The focus has been shifted from fossil fuels to sustainable and cost-effective alternative energy sources to meet the requirement of the future generation. These energy sources include bioenergy in the form of biofuel, biodiesel, bioethanol, and biogas usually produced from the various organic biomasses. There are various steps involving the production of bioenergy from biomass and few of them hinder their commercialization. Nanotechnology offers a meaningful solution to the conventional bioprocesses used for the bioenergy production by changing the characteristics of the feed materials and biocatalysts. Nanoparticles manifest many unique characteristics like small size, large surface area, chemical stability, uniformity, and the ability of dispersion, and their electronic, magnetic, optical, physical, and chemical properties outclass them with their counterpart technologies. This chapter discusses an overview of the advantages of different types of nanoparticles used at various steps in the bioenergy production.


Bioenergy Biofuel Nanoparticles Nanotechnology 


  1. Abbaraju RR, Dasgupta N, Virkar AV (2008) Composite Nafion membranes containing nanosize TiO2∕ SnO2 for proton exchange membrane fuel cells. J Electrochem Soc 155(12):B1307–B1313CrossRefGoogle Scholar
  2. Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic Nanostructures: Environmental and Agricultural Applications. Springer International Publishing (ISBN 978-3-030-16438-6)
  3. Alzate CC, Toro OS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31(13):2447–2459CrossRefGoogle Scholar
  4. Ambuchi JJ, Zhang Z, Shan L, Liang D, Zhang P, Feng Y (2017) Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment. Water Res 117:87–94PubMedCrossRefGoogle Scholar
  5. An J, Jeon H, Lee J, Chang IS (2011) Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity. Environ Sci Technol 45(12):5441–5446PubMedCrossRefGoogle Scholar
  6. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523PubMedCrossRefGoogle Scholar
  7. Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energ 98:23–28CrossRefGoogle Scholar
  8. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170PubMedPubMedCentralCrossRefGoogle Scholar
  9. Budarin V, Shuttleworth PS, Lanigan B, Clark JH (2013) Nanocatalysts for biofuels. In: Polshettiwar V, Asefa T (eds) Nanocatalysis synthesis and applications. Wiley, Hoboken, pp 595–614CrossRefGoogle Scholar
  10. Casals E, Barrena R, García A, González E, Delgado L, Busquets-Fité M, Font X, Arbiol J, Glatzel P, Kvashnina K, Sánchez A (2014) Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10(14):2801–2808PubMedCrossRefGoogle Scholar
  11. Chang RH, Jang J, Wu KC (2011) Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem 13(10):2844–2850CrossRefGoogle Scholar
  12. Chen G, Guo CY, Qiao H, Ye M, Qiu X, Yue C (2013) Well-dispersed sulfated zirconia nanoparticles as high-efficiency catalysts for the synthesis of bis (indolyl) methanes and biodiesel. Catal Commun 41:70–74CrossRefGoogle Scholar
  13. Chen B, Li F, Huang Z, Yuan G (2017) Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Appl Catal B 200:192–199CrossRefGoogle Scholar
  14. Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese J Catal 36(8):1223–1229CrossRefGoogle Scholar
  15. Cipolatti EP, Silva MJ, Klein M, Feddern V, Feltes MM, Oliveira JV, Ninow JL, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67CrossRefGoogle Scholar
  16. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170PubMedCrossRefGoogle Scholar
  17. Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design – a review. Renew Sust Energ Rev 15(1):366–378CrossRefGoogle Scholar
  18. Dehkordi AM, Ghasemi M (2012) Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process Technol 97:45–51CrossRefGoogle Scholar
  19. Di Serio M, Tesser R, Pengmei L, Santacesaria E (2007) Heterogeneous catalysts for biodiesel production. Energy Fuel 22(1):207–217CrossRefGoogle Scholar
  20. Donoso-Bravo A, Mairet F (2012) Determining the limiting reaction in anaerobic digestion processes. How has this been tackled? J Chem Technol Biotechnol 87(10):1375–1378CrossRefGoogle Scholar
  21. Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manage 140:133–144CrossRefGoogle Scholar
  22. Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42(21):8101–8107PubMedCrossRefGoogle Scholar
  23. Fang Z, Zhang F, Zeng HY, Guo F (2011) Production of glucose by hydrolysis of cellulose at 423 K in the presence of activated hydrotalcite nanoparticles. Bioresour Technol 102(17):8017–8021PubMedCrossRefGoogle Scholar
  24. Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327PubMedGoogle Scholar
  25. García A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72PubMedCrossRefGoogle Scholar
  26. Ghasemi M, Daud WR, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013a) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrogen Energy 38(22):9533–9540CrossRefGoogle Scholar
  27. Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WR, Hassan SH, Heng LY, Alam J, Oh SE (2013b) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056CrossRefGoogle Scholar
  28. Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49):16864–16873PubMedCrossRefGoogle Scholar
  29. Gupta J, Agarwal M (2016) Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conf Proc.
  30. Gurunathan B, Ravi A (2015) Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour Technol 190:424–428PubMedCrossRefGoogle Scholar
  31. Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88(8):2685–2690CrossRefGoogle Scholar
  32. Hussain M, Ahmad R, Liu Y, Liu B, He M, He N (2017) Applications of nanomaterials and biological materials in bioenergy. J Nanosci Nanotechnol 17(12):8654–8666CrossRefGoogle Scholar
  33. Hussein AK (2015) Applications of nanotechnology in renewable energies – a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476CrossRefGoogle Scholar
  34. Hutchings G (2013) Nanocatalysis: synthesis and applications. John Wiley and Sons, WeinheimGoogle Scholar
  35. Ingram LO (1989) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9(4):305–319CrossRefGoogle Scholar
  36. Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299Google Scholar
  37. Jia Y, Hu Y, Zhu Y, Che L, Shen Q, Zhang J, Li X (2011) Oligoamines conjugated chitosan derivatives: synthesis, characterization, in vitro and in vivo biocompatibility evaluations. Carbohydr Polym 83(3):1153–1161CrossRefGoogle Scholar
  38. Khan MJ, Husain Q, Azam A (2012) Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: applications to the hydrolysis of starch. Biotechnol Bioprocess Eng 17(2):377–384CrossRefGoogle Scholar
  39. Kim YK, Lee H (2016) Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour Technol 204:139–144PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kim YK, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159:446–450PubMedCrossRefGoogle Scholar
  41. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710CrossRefGoogle Scholar
  42. Kumar Gupta S, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34(13–14):1653–1670CrossRefGoogle Scholar
  43. Larsen SC (2007) Nanocrystalline zeolites and zeolite structures: synthesis, characterization, and applications. J Phys Chem C 111(50):18464–18474CrossRefGoogle Scholar
  44. Lee YC, Huh YS, Farooq W, Chung J, Han JI, Shin HJ, Jeong SH, Lee JS, Oh YK, Park JY (2013) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81PubMedCrossRefGoogle Scholar
  45. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916PubMedCrossRefGoogle Scholar
  46. Li M (2017) World Energy 2017-2050: Annual report. Scholar
  47. Lin YF, Chen JH, Hsu SH, Hsiao HC, Chung TW, Tung KL (2012) The synthesis of Lewis acid ZrO2 nanoparticles and their applications in phospholipid adsorption from Jatropha oil used for biofuel. J Colloid Interface Sci 368(1):660–662PubMedCrossRefGoogle Scholar
  48. Liu KK, Chen MF, Chen PY, Lee TJ, Cheng CL, Chang CC, Ho YP, Chao JI (2008) Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19(20):205102PubMedCrossRefGoogle Scholar
  49. Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  50. Luna-del Risco M, Orupõld K, Dubourguier HC (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189(1–2):603–608CrossRefGoogle Scholar
  51. Lupoi JS, Smith EA (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108(12):2835–2843PubMedCrossRefGoogle Scholar
  52. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Ener Rev 15(6):3141–3155CrossRefGoogle Scholar
  53. Malik P, Sangwan A (2012) Nanotechnology: a tool for improving efficiency of bio-energy. J Eng Appl Sci 1:37–49Google Scholar
  54. Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10(3):248–268CrossRefGoogle Scholar
  55. Mendes AA, Oliveira PC, Castro HF, Giordano RD (2011) Application of chitosan as support for immobilization of enzymes of industrial interest. Quím Nova 34(5):831–840Google Scholar
  56. Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnæs S (2014) Oxidation of bioethanol using Zeolite-encapsulated gold nanoparticles. Angew Chem Int Ed 126(46):12721–12724CrossRefGoogle Scholar
  57. Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7(11):7194–7222CrossRefGoogle Scholar
  58. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12(102):20140891. Scholar
  59. Nicolas P, Lassalle V, Ferreira ML (2014) Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess Biosyst Eng 37(3):585–591PubMedCrossRefGoogle Scholar
  60. Pathak PK, Raj J, Saxena G, Sharma US (2017) A review on production of biodiesel by transesterification using heterogeneous nanocatalyst. Int J Sci Res Dev 5(2):631–636Google Scholar
  61. Pugh S, McKenna R, Moolick R, Nielsen DR (2011) Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 89(1):2–12CrossRefGoogle Scholar
  62. Rad AG, Abbasi H, Afzali MH (2011) Gold nanoparticles: synthesizing, characterizing and reviewing novel application in recent years. Phys Procedia 22:203–208CrossRefGoogle Scholar
  63. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24(2):192–196Google Scholar
  64. Rahimnejad M, Ghasemi M, Najafpour GD, Ismail M, Mohammad AW, Ghoreyshi AA, Hassan SH (2012) Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 85:700–706CrossRefGoogle Scholar
  65. Rai M, dos Santos JC, Soler MF, Marcelino PR, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250CrossRefGoogle Scholar
  66. Raita M, Arnthong J, Champreda V, Laosiripojana N (2015) Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process Technol 134:189–197CrossRefGoogle Scholar
  67. Ram MS, Singh L, Suryanarayana MV, Alam SI (2000) Effect of iron, nickel and cobalt on bacterial activity and dynamics during anaerobic oxidation of organic matter. Water Air Soil Poll 117(1–4):305–312CrossRefGoogle Scholar
  68. Rao PP, Seenayya G (1994) Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol 10(2):211–214CrossRefGoogle Scholar
  69. Reis P, Witula T, Holmberg K (2008) Mesoporous materials as host for an entrapped enzyme. Micropor Mesopor Mat 110(2–3):355–362CrossRefGoogle Scholar
  70. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353PubMedCrossRefGoogle Scholar
  71. Santos FC, Paim LL, da Silva JL, Stradiotto NR (2016) Electrochemical determination of total reducing sugars from bioethanol production using glassy carbon electrode modified with graphene oxide containing copper nanoparticles. Fuel 163:112–121CrossRefGoogle Scholar
  72. Schrand AM, Hens SA, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34(1–2):18–74CrossRefGoogle Scholar
  73. Schügerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300PubMedCrossRefGoogle Scholar
  74. Shah S, Venkatramanan V, Prasad R (2019) Microbial fuel cell: Sustainable green technology for bioelectricity generation and wastewater treatment. In: Sustainable Green Technologies for Environmental Management (eds. Shah S, Venkatramanan V, Prasad R), Springer Springer Nature Singapore Pte Ltd. 199–218Google Scholar
  75. Shuttleworth PS, Parker HL, Hunt AJ, Budarin VL, Matharu AS, Clark JH (2014) Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chem 16(2):573–584CrossRefGoogle Scholar
  76. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580PubMedCrossRefGoogle Scholar
  77. Souza KC, Mohallem ND, Sousa EM (2011) Magnetic nanocomposites: potential for applications in Biomedicine. Quím Nova 34(10):1692–1703CrossRefGoogle Scholar
  78. Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuel Bioenerg 1(1):55–63CrossRefGoogle Scholar
  79. Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7:514. Scholar
  80. Straathof AJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19(3):755–762PubMedCrossRefGoogle Scholar
  81. Su L, Shi X, Guo G, Zhao A, Zhao Y (2013) Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. J Mater Cycle Waste Manage 15(4):461–468CrossRefGoogle Scholar
  82. Tan C, Zhao S, Yang G, Hu S, Qin X (2015) Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21(4):987–994CrossRefGoogle Scholar
  83. Taufiqurrahmi N, Mohamed AR, Bhatia S (2011) Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies. Bioresour Technol 102(22):10686–10694PubMedCrossRefGoogle Scholar
  84. Uygun DA, Öztürk N, Akgöl S, Denizli A (2012) Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α-amylase. J Appl Polym Sci 123(5):2574–2581CrossRefGoogle Scholar
  85. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6PubMedCrossRefGoogle Scholar
  86. Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. Chem Sus Chem 2(10):947–950CrossRefGoogle Scholar
  87. Wang X, Liu X, Zhao C, Ding Y, Xu P (2011) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour Technol 102(10):6352–6355PubMedCrossRefGoogle Scholar
  88. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L (2012) Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 4(2):977–981PubMedCrossRefGoogle Scholar
  89. Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89(9):2267–2271CrossRefGoogle Scholar
  90. Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106CrossRefGoogle Scholar
  91. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energ Fuel 23(3):1347–1353CrossRefGoogle Scholar
  92. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34(6):890–896CrossRefGoogle Scholar
  93. Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134(41):16987–16990PubMedCrossRefGoogle Scholar
  94. Yan Z, Wang M, Huang B, Liu R, Zhao J (2013) Graphene supported Pt-Co alloy nanoparticles as cathode catalyst for microbial fuel cells. Int J Electrochem Sci 8:149–158Google Scholar
  95. Yang Y, Xu M, Wall JD, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32(5):816–825PubMedCrossRefGoogle Scholar
  96. Younes NR, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, El Ghoul J, El Mir L, Rhouma KB, Abdelmelek H, Sakly M (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 22(11):8728–8737CrossRefGoogle Scholar
  97. Yu CY, Huang LY, Kuan I, Lee SL (2013) Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int J Mol Sci 14(12):24074–24086PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yulianti CH, Ediati R, Hartanto D, Purbaningtias TE, Chisaki Y, Jalil AA, Ku CK, Prasetyoko D (2014) Synthesis of CaO-ZnO nanoparticles catalyst and its application in transesterification of refined palm oil. Bull Chem Reac Eng Cat 9(2):100–110Google Scholar
  99. Zaidi AA, RuiZhe F, Shi Y, Khan SZ, Mushtaq K (2018) Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int J Hydrogen Energy 18:1–12Google Scholar
  100. Zhang J, Wang L, Ji Y, Chen F, Xiao FS (2018) Mesoporous zeolites for biofuel upgrading and glycerol conversion. Front Chem Sci Eng 26(1):132–144CrossRefGoogle Scholar
  101. Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z (2014) Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12):12660–12668PubMedCrossRefGoogle Scholar
  102. Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z, Liu S (2015) Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci Adv 1(10):e1500372. Scholar
  103. Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu DY, Yang S (2015) Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J Ind Eng Chem 31:385–392CrossRefGoogle Scholar
  104. Zuliani A, Ivars F, Luque R (2018) Advances in nanocatalyst design for biofuel production. Chem Cat Chem 10(9):1968–1981Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Amandeep Brar
    • 1
  • Manish Kumar
    • 1
  • Vivekanand Vivekanand
    • 2
  • Nidhi Pareek
    • 1
    Email author
  1. 1.Department of MicrobiologySchool of Life Sciences, Central University of Rajasthan, BandarsindriKishangarh, AjmerIndia
  2. 2.Centre for Energy and Environment, Malaviya National Institute of TechnologyJaipurIndia

Personalised recommendations