Nanoparticles from Fungal Resources: Importance and Applications

  • Vipin Parkash
  • Akshita Gaur
  • Rahul Agnihotri
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology has emerged as a most fascinating and attractive field during the last couple of decades. It is the most rapidly advancing science and possesses potential to revolutionize the disciplines of science and technology, medicine and agriculture. If it is exploited properly, it can revolutionize the entire society due to its wide scope of applications. In agriculture and forestry fields, nanotechnology can be used for conservation and exploitation of natural resources, production of crops and forest disease protection and management. Nanoparticles can be used in biocontrol of pathogens and for forest disease management in the field of forest pathology. Nanoparticle synthesis is mostly achieved through the use of chemicals through reduction, which can be a source of toxic materials entering into the environment, thereby causing a threat to environment and human life. Thus, a more sustainable green source is required for the synthesis of nanoparticles. Therefore, mycosynthesis can be a great option for green synthesis of nanoparticles as fabrication through fungal resources is fast, cheap and more sustainable. Hence, the synthesis of nanoparticles from fungal resources and their importance and applications have been discussed in this chapter.


Applications Carbon nanotubes Dendrimers Fullerenes Fungal nanoparticles Properties Quantum dots Synthesis 


  1. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M, Wang S), Springer Singapore Pte Ltd. 61–87Google Scholar
  2. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120. Scholar
  3. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology Applications in Plant Protection. Springer International Publishing (ISBN 978-3-319-91161-8)
  4. Abd-Elsalam K, Prasad R (2019) Nanobiotechnology Applications in Plant Protection. Volume 2. Springer International Publishing (ISBN 978-3-030-13295-8)
  5. Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1(7):1582–1592Google Scholar
  6. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles-an eco-friendly approach. Resour Eff Technol 3(4):406–413Google Scholar
  7. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109PubMedCrossRefGoogle Scholar
  8. Alaqad K, Saleh TA (2016) Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol 6(384):2161–0525Google Scholar
  9. Anitha TS, Palanivelu P (2011) Synthesis and structural characterization of polydisperse silver and multishaped gold nanoparticles using F. oxysporum MTCC 284. Dig J Nanomater Biostruc 6(4):1587–1595Google Scholar
  10. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.
  11. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  12. Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Physica E 25(1):1–2CrossRefGoogle Scholar
  13. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361CrossRefGoogle Scholar
  14. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(1):2583–2589CrossRefGoogle Scholar
  15. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bansod S, Bonde S, Tiwari V, Bawaskar M, Deshmukh S, Gaikwad S, Gade A, Rai M (2013) Bioconjugation of gold and silver nanoparticles synthesized by F. oxysporum and their use in rapid identification of Candida species by using bioconjugate-nano-polymerase chain reaction. J Biomed Nanotechnol 9(12):1962–1971PubMedCrossRefGoogle Scholar
  17. Banu NA, Balasubramanian C (2014) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(8):2869–2877PubMedCrossRefGoogle Scholar
  18. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179PubMedCrossRefGoogle Scholar
  19. Blaney L (2007) Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Rev 15:33–81Google Scholar
  20. Camacho JM, Oliva AI (2005) Morphology and electrical resistivity of metallic nanostructures. Microelectron J 36(3–6):555–558CrossRefGoogle Scholar
  21. Castro-Longoria E, Moreno-Velázquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nano-aggregates using Neurospora crassa. J Microbiol Biotechnol 22(7):1000–1004PubMedCrossRefGoogle Scholar
  22. Chen GQ, Zou ZJ, Zeng GM, Yan M, Fan JQ, Chen AW, Yang F, Zhang WJ, Wang L (2011) Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution. Chemosphere 83(9):1201–1207PubMedCrossRefGoogle Scholar
  23. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199PubMedCrossRefGoogle Scholar
  24. Du L, Xian L, Feng JX (2011) Rapid extra−/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930CrossRefGoogle Scholar
  25. Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF, Liu C, Chen CH, Lu YH, Cao ZW, Zhang L (2015) NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol 286(2):80–91PubMedCrossRefPubMedCentralGoogle Scholar
  26. Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  27. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(6). Scholar
  28. Elmer WH, Ma C, White JC (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Health 6:66–70CrossRefGoogle Scholar
  29. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fayaz MA, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252CrossRefGoogle Scholar
  31. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5(4):382–386CrossRefGoogle Scholar
  32. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976PubMedCrossRefPubMedCentralGoogle Scholar
  33. Guo D, Xie G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001. Scholar
  34. Guo Q, Guo Q, Yuan J, Zeng J (2014) Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin. Colloids Surf A Physicochem Eng Asp 441:127–132CrossRefGoogle Scholar
  35. Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek 103(5):1113–1123PubMedCrossRefGoogle Scholar
  36. Hett A (2004) Nanotechnology: small matter, many unknowns. Swiss Reinsurance Company, ZurichGoogle Scholar
  37. Horikoshi S, Serpone N (2013) Introduction to nanoparticles. In: Microwaves in nanoparticle synthesis: fundamentals and applications, 1st edn. Wiley, New York, pp 1–24CrossRefGoogle Scholar
  38. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16. Scholar
  39. Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085CrossRefGoogle Scholar
  40. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2010) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641PubMedCrossRefGoogle Scholar
  41. Kaler A, Jain S, Banerjee UC (2013) Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis. Biomed Res Int. Scholar
  42. Karbasian M, Atyabi SM, Siadat SD, Momem SB, Norouzian D (2008) Optimizing nano-silver formation by F. oxysporum (PTCC 5115) employing response surface methodology. Am J Agric Biol Sci 3(1):433–437CrossRefGoogle Scholar
  43. Karthika D, Vadakkan K, Ashwini R, Shyamala A, Hemapriya J, Vijayanand S (2015) Prodigiosin mediated biosynthesis of silver nanoparticles (AgNPs) and evaluation of its antibacterial efficacy. Int J Curr Microbiol App Sci 4(11):868–874Google Scholar
  44. Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71(1):133–137PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588PubMedCrossRefGoogle Scholar
  46. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus F. oxysporum. J Biomed Nanotechnol 3(2):190–194CrossRefGoogle Scholar
  47. Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation, conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19(49):495101. Scholar
  48. Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol 12(5):247–256CrossRefGoogle Scholar
  49. Lara HH, Ayala-Núñez NV, Turrent LDCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621CrossRefGoogle Scholar
  50. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425PubMedCrossRefGoogle Scholar
  51. Medentsev AG, Alimenko VK (1998) Naphthoquinone metabolites of the fungi. Photochemistry 47:935–959CrossRefGoogle Scholar
  52. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242PubMedCrossRefGoogle Scholar
  53. Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Konya Z, Toth-Szeles E, Szucs R, Lagzi I (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8(1):3943. Scholar
  54. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110CrossRefGoogle Scholar
  55. Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27(7):711–719PubMedCrossRefGoogle Scholar
  56. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. Scholar
  57. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463PubMedCrossRefPubMedCentralGoogle Scholar
  58. Nachiyar V, Sunkar S, Prakash P (2015) Biological synthesis of gold nanoparticles using endophytic fungi. Der Pharma Chem 7(11):31–38Google Scholar
  59. Namasivayam SKR, Avimanyu (2011) Silver nanoparticle synthesis from Lecanicillium lecanii and evolutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Pharm Sci 3(4):190–195Google Scholar
  60. Narayanan KB, Sakthivel N (2011) Facile green synthesis of gold nanostructures by NADPH- dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A Physicochem Eng Asp 380(1–3):156–161CrossRefGoogle Scholar
  61. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Bios 4(4):623–629Google Scholar
  62. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234Google Scholar
  63. Percival SL, Bowler PG, Dolman J (2007) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 4(2):186–191PubMedCrossRefGoogle Scholar
  64. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73(2):374–381CrossRefGoogle Scholar
  65. Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)Google Scholar
  66. Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)Google Scholar
  67. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  68. Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0
  69. Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics learning from nature. InTech, China, pp 1–20Google Scholar
  70. Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS One 8(10):77486. Scholar
  71. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178CrossRefGoogle Scholar
  72. Rajan A, Cherian E, Baskar G (2016) Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Int J Mod Sci Technol 1:52–57Google Scholar
  73. Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonates crystals using the fungus F. oxysporum. Langmuir 20(16):6827–6833PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rzigalinski BA, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238(3):280–288PubMedPubMedCentralCrossRefGoogle Scholar
  75. Saglam N, Yesilada O, Cabuk A, Sam M, Saglam S, Ilk S, Emul E, Celik PA, Gurel E (2016) Innovation of strategies and challenges for fungal nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Springer, Cham, pp 25–46CrossRefGoogle Scholar
  76. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. IET Micro Nano Lett 6(8):599–602CrossRefGoogle Scholar
  77. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  78. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar KB, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, F. semitectum. Sci Technol Adv Mater 9(3):035012. Scholar
  79. SCENIHR (Scientific committee on emerging and newly identified health risks) (2007) Modified opinion (after public consultation) on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. European Commission Health and Consumer Protection Directorate-General. Synthesis report:
  80. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakac SG, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943CrossRefGoogle Scholar
  81. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98. Scholar
  82. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908PubMedCrossRefGoogle Scholar
  83. Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 38(2):160–175Google Scholar
  84. Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J Pharm Tech Res 1(4):1523–1529Google Scholar
  85. Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus F. oxysporum. Colloids Surf B Biointerfaces 97:27–31PubMedCrossRefGoogle Scholar
  86. Tidke PR, Gupta I, Gade AK, Rai M (2014) Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. IEEE Trans Nanobioscience 13(4):397–402PubMedCrossRefGoogle Scholar
  87. Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):033001. Scholar
  88. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vipin Parkash
    • 1
  • Akshita Gaur
    • 1
  • Rahul Agnihotri
    • 1
  1. 1.Forest Pathology Discipline, Forest Protection Division, Forest Research Institute, Indian Council Forestry Research and EducationDehradunIndia

Personalised recommendations