Advertisement

Plaintext-Verifiably-Checkable Encryption

  • Sha MaEmail author
  • Qiong Huang
  • Ximing Li
  • Meiyan Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)

Abstract

The notion of plaintext-checkable encryption (PCE) has recently emerged in the application of search on encrypted data only by plaintexts. We observe that existing PCE schemes are not sufficient to guarantee check correctness in the case of a malicious encryptor. To address this concern, we put forth the concept of plaintext-verifiably-checkable encryption (PVCE), which captures the basic requirement of output correctness: If M is thought to be the plaintext for a ciphertext \(\textsf {ct}\) by the Check algorithm, \(\textsf {ct}\) is actually a valid encryption of M. In other words, it does not exist any maliciously generated ciphertext could succeed in plaintext checking. This property guarantees a meaningful notion of correctness and is crucial in several applications. We propose a PVCE construction using pairing-friendly smooth projective hash function with modified language representation and prove it to be unlink-cca security in the standard model. This is the first verifiable plaintext-checkable encryption that provides both verifiable checkability and the most desirable security in the standard model. To this end, we show a PVCE instantiation from k-MDDH assumption.

Keywords

Plaintext checkable encryption Verifiability Smooth projective hash function Pairing friendly k-MDDH assumption 

Notes

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 61872409, 61872152), Pearl River Nova Program of Guangzhou (No. 201610010037), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030306021) and Guangdong Program for Special Support of Topnotch Young Professionals (No. 2015TQ01X796).

References

  1. 1.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_30CrossRefGoogle Scholar
  2. 2.
    Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31815-6_7CrossRefGoogle Scholar
  3. 3.
    Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77026-8_21CrossRefGoogle Scholar
  4. 4.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_39CrossRefGoogle Scholar
  5. 5.
    Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable public-key encryption scheme with a designated tester. J. Syst. Softw. 83, 763–771 (2010)CrossRefGoogle Scholar
  6. 6.
    Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_9CrossRefGoogle Scholar
  7. 7.
    Tang, Q.: Public key encryption schemes supporting equality test with authorization of different granularity. Int. J. Appl. Cryptogr. 2(4), 304–321 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tang, Q.: Public key encryption supporting plaintext equality test and user-specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, K., Tso, R., Chen, Y., Rahman, S., Almogren, A., Alamri, A.: PKE-AET: public key encryption with authorized equality test. Comput. J. 58(10), 2686–2697 (2015)CrossRefGoogle Scholar
  10. 10.
    Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur. 10(3), 458–470 (2015)CrossRefGoogle Scholar
  11. 11.
    Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–348. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_21CrossRefGoogle Scholar
  12. 12.
    Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database encryption. Inf. Sci. 429, 88–101 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Carbunar, B., Sion, R.: Toward private joins on outsourced data. IEEE Trans. Knowl. Data Eng. 24(9), 1699–1710 (2012)CrossRefGoogle Scholar
  14. 14.
    Furukawa, J., Isshiki, T.: Controlled joining on encrypted relational database. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 46–64. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36334-4_4CrossRefGoogle Scholar
  15. 15.
    Hweehwa, P., Xuhua, D.: Privacy-preserving ad-hoc equi-join on outsourced data. ACM Trans. Database Syst. (TODS) 39(3), 23:1–23:40 (2014)MathSciNetGoogle Scholar
  16. 16.
    Ma, S.: Authorized equi-join for multiple data contributors in the PKC-based setting. Comput. J. 60(12), 1822–1838 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  18. 18.
    Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 339–369. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_12CrossRefGoogle Scholar
  19. 19.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_25CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations