Advertisement

A Practical Lattice-Based Sequential Aggregate Signature

  • Zhipeng WangEmail author
  • Qianhong WuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)

Abstract

In this work, we construct a lattice-based efficient Sequential Aggregate Signature (SAS) scheme that is provably secure in standard ideal cipher model with some slight changes. This framework is inspired by the scheme of Gentry et al. at PKC 2018 which presented trapdoor-permutation-based sequential aggregate signatures. Since to present, there is no known method to construct a lattice-based trapdoor permutation, we use lattice-based trapdoor function instead to design SAS scheme. In particular, our scheme is history-free, where the sequentially-executed aggregation operation does not need to take the previous messages in order as one part of its input. We also give software implementation of our SAS scheme using FALCON based trapdoor function, which originates from the provably secure NTRUSign signature scheme proposed by Stehlé and Steinfeld at Eurocrypt 2011. The experiment results show our scheme is efficient and practical.

Keywords

Sequential aggregate signature Lattice Trapdoor function Software implementation 

Notes

Acknowledgment

This paper is supported by the National Key R&D Program of China through project 2017YFB0802500, by the National Cryptography Development Fund through project MMJJ20170106, by the foundation of Science and Technology on Information Assurance Laboratory through project 61421120305162112006, the Natural Science Foundation of China through projects 61772538, 61672083, 61532021, 61472429, 91646203 and 61402029.

References

  1. 1.
    Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73420-8_37CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)Google Scholar
  3. 3.
    Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 276–285. ACM (2007)Google Scholar
  4. 4.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_10CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_26CrossRefGoogle Scholar
  6. 6.
    Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification from trapdoor permutations. Inf. Comput. 239, 356–376 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp. 191–198. ACM (2016).  https://doi.org/10.1145/2930889.2930923
  9. 9.
    El Bansarkhani, R., Buchmann, J.: Towards lattice based aggregate signatures. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 336–355. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_21CrossRefGoogle Scholar
  10. 10.
    Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_7CrossRefGoogle Scholar
  11. 11.
    Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU (2018). Accessed 12 June 2019. https://falcon-sign.info/
  12. 12.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  13. 13.
    Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_7CrossRefGoogle Scholar
  14. 14.
    Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: Subgaussian sampling and more. Technical report, Cryptology ePrint Archive, Report 2018/946, 2018 (2018). https://eprint.iacr.org/2018/946.pdf
  15. 15.
    Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 34–57. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_2CrossRefGoogle Scholar
  16. 16.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)Google Scholar
  17. 17.
    Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and evaluation of improved Gaussian sampling for lattice trapdoors. In: Proceedings of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pp. 61–71. ACM (2018)Google Scholar
  18. 18.
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36563-X_9CrossRefGoogle Scholar
  19. 19.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_27CrossRefGoogle Scholar
  20. 20.
    Hu, Y., Jia, H.: A new Gaussian sampling for trapdoor lattices with arbitrary modulus. Des. Codes Crypt. 1–18 (2019).  https://doi.org/10.1007/s10623-019-00635-8 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_13CrossRefGoogle Scholar
  22. 22.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_28CrossRefGoogle Scholar
  23. 23.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures, multisignatures, and verifiably encrypted signatures without random oracles. J. Cryptol. 26(2), 340–373 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lu, X., Yin, W., Wen, Q., Jin, Z., Li, W.: A lattice-based unordered aggregate signature scheme based on the intersection method. IEEE Access 6, 33986–33994 (2018).  https://doi.org/10.1109/ACCESS.2018.2847411CrossRefGoogle Scholar
  25. 25.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_5CrossRefGoogle Scholar
  26. 26.
    Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_13CrossRefGoogle Scholar
  27. 27.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  28. 28.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  29. 29.
    Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_4CrossRefGoogle Scholar
  30. 30.
    Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_8CrossRefGoogle Scholar
  31. 31.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999).  https://doi.org/10.1137/S0097539795293172MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_4CrossRefGoogle Scholar
  34. 34.
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_36CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Cyber Science and TechnologyBeihang UniversityBeijingChina

Personalised recommendations