Advertisement

TumbleBit++: A Comprehensive Privacy Protocol Providing Anonymity and Amount-Invisibility

  • Yi Liu
  • Zhen LiuEmail author
  • Yu LongEmail author
  • Zhiqiang LiuEmail author
  • Dawu GuEmail author
  • Fei HuanEmail author
  • Yanxue Jia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)

Abstract

Since the advent of bitcoin, the privacy of bitcoin has become a hot issue. Many coin mixing protocols guarantee the anonymity and unlinkability of the payer and payee of a transaction. However, due to the publicity of blockchain, the confidentiality of transaction amounts has not been provided. Everyone has the chance to get the amount of a transaction, which poses a challenge to the privacy of users.

To overcome the problem, we propose an improved mixing protocol based on TumbleBit, which is named TumbleBit++. TumbleBit++ combines confidential transactions with centralized untrusted anonymous payment hub, and achieves the protection of transaction amounts without undermining the anonymity of TumbleBit. TumbleBit++ allows multiple payers to trade in different transaction amounts, and Tumbler, as an untrusted third party, does not know the exact amount of each transaction and the flow of funds between the payer and payee of one transaction.

Keywords

TumbleBit Confidential transactions Bitcoin 

Notes

Acknowledgement

The authors are supported by the National Natural Science Foundation of China (Grant No. 61672347, 61572318, 61672339, 61872142), the National Cryptography Development Fund (No. MMJJ20170111) and Minhang Technology Innovation Program for SMEs, a finance business platform based on blockchain technology (2018MH110).

References

  1. 1.
    Ruffling, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin mixing for bitcoin. In: Kutylowski, M., Vaudya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014)Google Scholar
  2. 2.
    Heilman, E., AlShenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted Bitcoin-compatible anonymous payment hub. In: NDSS 2017 (2017)Google Scholar
  3. 3.
    Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/~greg/confidential_values.txt
  4. 4.
    Noether, S.: Review of CryptoNote white paper. https://downloads.getmonero.org/whitepaper_review.pdf
  5. 5.
    OmegaStarScream: Bitcoin Core & pruning mode. Bitcoin Forum. https://bitcointalk.org/index.php?topic=1599458.0
  6. 6.
    Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from Bitcoin. In: S&P 2013 (2013)Google Scholar
  7. 7.
    Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin. In: S&P 2014 (2014)Google Scholar
  8. 8.
    Gentry, C., Wiches, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC 2011 (2011)Google Scholar
  9. 9.
    Ruffling, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin transactions. In: NDSS 2017 (2017)Google Scholar
  10. 10.
    Ruffing, T., Moreno-Sanchez, P.: ValueShuffle: mixing confidential transactions for comprehensive transaction privacy in bitcoin. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 133–154. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_8CrossRefGoogle Scholar
  11. 11.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  12. 12.
    Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45748-8_24CrossRefGoogle Scholar
  13. 13.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)CrossRefGoogle Scholar
  15. 15.
    Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48969-X_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Viewsource Information Science and Technology Co., Ltd.ShanghaiChina

Personalised recommendations