A Centralized Digital Currency System with Rich Functions

  • Haibo TianEmail author
  • Peiran Luo
  • Yinxue Su
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)


The developments of cryptocurrencies push central banks of many countries to consider their own digital fiat currencies. As banks are usually taken as a trusted third party, it is unnecessary to rebuild a blockchain system to rebuild trust. However, cryptocurrencies provide many interesting features except the basic financial functions. It is naturally to absorb the interesting parts of cryptocurrencies to the centralized bank system. We here extract a stateful authentication mechanism from the practice of Ethereum and show how to run puzzle and payment channel templates in a centralized system, based on which we may build a fiat currency lighting network to support direct exchanges of users.


Digital fiat currency Stateful authentication Payment channel Lighting network 



This work is supported by the National Key R&D Program of China (2017YFB0802500), Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201711), Natural Science Foundation of China (61672550), Fundamental Research Funds for the Central Universities (No. 17lgjc45). Natural Science Foundation of Guangdong Province of China (2018A0303 130133).


  1. 1.
    Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From stateless to stateful: generic authentication and authenticated encryption constructions with application to TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer, Cham (2016). Scholar
  2. 2.
    Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating a safe smart contract: lessons and insights from a cryptocurrency lab. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  3. 3.
    Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: Network and Distributed System Security Symposium 2016, NDSS 2016, pp. 1–14. ACM (2016)Google Scholar
  4. 4.
    Han, X., Liu, Y., Xu, H.: A user-friendly centrally banked cryptocurrency. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 25–42. Springer, Cham (2017). Scholar
  5. 5.
    Meaning, J., Dyson, B., Barker, J., Clayton, E.: Broadening narrow money: monetary policy with a central bank digital currency (2018). Accessed 12 Aug 2018
  6. 6.
    Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016).
  7. 7.
    Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, New York, NY, USA, pp. 254–269. ACM (2016)Google Scholar
  8. 8.
    Bordo, M.D., Levin, A.T.: Central bank digital currency and the future of monetary policy (2017). Accessed 12 Aug 2018
  9. 9.
    Hearn, M.: Corda: a distributed ledger (2016)Google Scholar
  10. 10.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). Accessed 4 Aug 2017
  11. 11.
    Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and suicidal contracts at scale (2018). Accessed 1 July 2019
  12. 12.
    Bank of Canada: Staff working papers (2018).[]=31. Accessed 12 Aug 2018
  13. 13.
    Bank of England: Staff working papers (2018). Accessed 12 Aug 2018
  14. 14.
    Quorum: Welcome to the quorum wiki! (2016). Accessed 12 Aug 2018
  15. 15.
    Riksbank, S.: The Riksbank’s e-krona project (2018). Accessed 12 Aug 2018
  16. 16.
    Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9), 1 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Team. Mythril (2018). Accessed 1 July 2019
  18. 18.
    R. N. Team: Raiden network 0.100.3 documentation (2019).
  19. 19.
    Tian, H., Chen, X., Ding, Y., Zhu, X., Zhang, F.: AFCoin: a framework for digital fiat currency of central banks based on account model. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 70–85. Springer, Cham (2019). Scholar
  20. 20.
    Tsankov, P.: Security analysis of smart contracts in datalog. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 316–322. Springer, Cham (2018). Scholar
  21. 21.
    Wood, D.G.: Ethereum: a secure decentralised generalised transaction ledger homestead (2014). Accessed 4 Aug 2017
  22. 22.
    Yao, Q.: A systematic framework to understand central bank digital currency. Sci. China Inf. Sci. 61(3), 033101 (2018)CrossRefGoogle Scholar
  23. 23.
    Mersch, Y.: Digital base money: an assessment from the ECB’s perspective (2017). Accessed 12 Aug 2018
  24. 24.
    Zhang, F., Zhang, F., Wang, Y.: Fair electronic cash systems with multiple banks. In: Qing, S., Eloff, J.H.P. (eds.) SEC 2000. ITIFIP, vol. 47, pp. 461–470. Springer, Boston, MA (2000). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Information Security, School of Data and Computer ScienceSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations