Advertisement

Hierarchical Functional Signcryption: Notion and Construction

  • Dongxue Pan
  • Bei LiangEmail author
  • Hongda Li
  • Peifang Ni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)

Abstract

With the purpose of achieving fine-grained access control over the signing and decryption capabilities in the context of a traditional digital signcryption scheme, the concept of functional signcryption (FSC) is introduced by Datta et al. (ProvSec 2015) to provide the functionalities of both functional encryption (FE) and functional signature (FS) in an integrated paradigm. In this paper, we introduce the notion of hierarchical functional signcryption (HFSC), which augments the standard functional signcryption with hierarchical delegation capabilities on both signcrypting and unsigncrypting, thereby significantly expanding the scope of functional signcryption in hierarchical access-control application. More precisely, our contributions are two-fold: (i) we formalize the syntax of HFSC and its security notion, (ii) we provide a generic construction of HFSC based on cryptographic building blocks including indistinguishability obfuscation (iO) and statistically simulation-sound non-interactive zero-knowledge proof of knowledge (SSS-NIZKPoK) for NP relations, and we formally shows that it satisfies selective message confidentiality and selective ciphertext unforgeability.

Keywords

Hierarchical functional signcryption Indistinguishability obfuscation Statistically simulation-sound non-interactive zero-knowledge proof of knowledge 

Notes

Acknowledgement

This work is supported by National Key R&D Program of China (No. 2017YFB0802500). This work is also partially supported by the Swedish Research Council (Vetenskapsr\(\mathring{a}\)det) through the grant PRECIS (621-2014-4845).

References

  1. 1.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive 2013, 689 (2013)Google Scholar
  2. 2.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 357–386. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_14CrossRefGoogle Scholar
  3. 3.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical functional encryption (2017)Google Scholar
  5. 5.
    Brakerski, Z., Dagmi, O.: Shorter circuit obfuscation in challenging security models. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 551–570. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44618-9_29CrossRefzbMATHGoogle Scholar
  6. 6.
    Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: decentralised and delegatable. IACR Cryptology ePrint Archive 2015, 1017 (2015)Google Scholar
  7. 7.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional signcryption: notion, construction, and applications. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 268–288. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_15CrossRefGoogle Scholar
  8. 8.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: IEEE Symposium on Foundations of Computer Science (2013)Google Scholar
  9. 9.
    Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_10CrossRefGoogle Scholar
  10. 10.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  11. 11.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_21CrossRefGoogle Scholar
  12. 12.
    Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM 59(3), 1–35 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052234CrossRefGoogle Scholar
  14. 14.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Lab of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Data Assurance and Communication Security Research CenterCASBeijingChina
  4. 4.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations