Advertisement

Identity-Concealed Authenticated Encryption from Ring Learning with Errors

  • Chao Liu
  • Zhongxiang Zheng
  • Keting JiaEmail author
  • Limin Tao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11821)

Abstract

Authenticated encryption (AE) is very suitable for a resources constrained environment for it needs less computational costs and AE has become one of the important technologies of modern communication security. Identity concealment is one of research focuses in design and analysis of current secure transport protocols (such as TLS1.3 and Google’s QUIC). In this paper, we present a provably secure identity-concealed authenticated encryption in the public-key setting over ideal lattices, referred to as RLWE-ICAE. Our scheme can be regarded as a parallel extension of higncryption scheme proposed by Zhao (CCS 2016), but in the lattice-based setting. RLWE-ICAE can be viewed as a monolithic integration of public-key encryption, key agreement over ideal lattices, identity concealment and digital signature. The security of RLWE-ICAE is directly relied on the Ring Learning with Errors (RLWE) assumption. Two concrete choices of parameters are provided in the end.

Keywords

Authenticated encryption RLWE Lattice-based Identity-concealed Provable security 

Notes

Acknowledgments

This article is supported by The National Key Research and Development Program of China (Grant No. 2017YFA0303903), National Cryptography Development Fund (No. MMJJ20170121), and Zhejiang Province Key R&D Project (No. 2017C01062). Authors thank Aijun Ge for discussions and the anonymous ProvSec’19 reviewers for helpful comments.

References

  1. 1.
    Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_4CrossRefGoogle Scholar
  2. 2.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343 (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
  3. 3.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptology 20(2), 203–235 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 553–570 (2015)Google Scholar
  5. 5.
    Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV channel establishment protocol. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 373–386 (2013)Google Scholar
  6. 6.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_1CrossRefGoogle Scholar
  7. 7.
    Dent, A.W.: Hybrid cryptography. IACR Cryptology ePrint Archive 2004, 210 (2004). http://eprint.iacr.org/2004/210
  8. 8.
    Ding, J.: A simple provably secure key exchange scheme based on the learning with errors problem. IACR Cryptology ePrint Archive 2012, 688 (2012). http://eprint.iacr.org/2012/688
  9. 9.
    Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure password authenticated key exchange based on RLWE for the post-quantum world. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52153-4_11CrossRefGoogle Scholar
  10. 10.
    Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_3CrossRefGoogle Scholar
  11. 11.
    Gorantla, M.C., Boyd, C., González Nieto, J.M.G.: On the connection between signcryption and one-pass key establishment. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 277–301. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77272-9_17CrossRefzbMATHGoogle Scholar
  12. 12.
    Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 317–334. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_20CrossRefzbMATHGoogle Scholar
  13. 13.
    Iyengar, S., Nekritz, K.: Building zero protocol for fast, secure mobile connections (2017). https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
  14. 14.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_19CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Lyubashevsky, V.: Lattice signatures without trapdoors. IACR Cryptology ePrint Archive 2011, 537 (2011). http://eprint.iacr.org/2011/537
  17. 17.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_43CrossRefGoogle Scholar
  18. 18.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  19. 19.
    Menezes, A., Qu, M., Vanstone, S.A.: Some new key agreement protocols providing mutual implicit authentication (1995)Google Scholar
  20. 20.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_12CrossRefzbMATHGoogle Scholar
  22. 22.
    Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446, pp. 1–160 (2018)Google Scholar
  23. 23.
    Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, Washington, DC, USA, 18–22 November 2002, pp. 98–107 (2002)Google Scholar
  24. 24.
    Roskind, J.: Quick UDP internet connections: multiplexed stream transport over UDP (2012)Google Scholar
  25. 25.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yang, Z., Chen, Y., Luo, S.: Two-message key exchange with strong security from ideal lattices. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 98–115. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76953-0_6CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_24CrossRefGoogle Scholar
  28. 28.
    Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1464–1479 (2016)Google Scholar
  29. 29.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost (encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052234CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chao Liu
    • 1
  • Zhongxiang Zheng
    • 2
  • Keting Jia
    • 2
    Email author
  • Limin Tao
    • 3
  1. 1.Key Laboratory of Cryptologic Technology and Information Security, Ministry of EducationShandong UniversityJinanPeople’s Republic of China
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Space Star Technology Co., LTD.BeijingPeople’s Republic of China

Personalised recommendations