Advertisement

An AutoML Approach for the Prediction of Fluid Intelligence from MRI-Derived Features

  • Sebastian PölsterlEmail author
  • Benjamín Gutiérrez-Becker
  • Ignacio Sarasua
  • Abhijit Guha Roy
  • Christian Wachinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11791)

Abstract

We propose an AutoML approach for the prediction of fluid intelligence from T1-weighted magnetic resonance images. We extracted 122 features from MRI scans and employed Sequential Model-based Algorithm Configuration to search for the best prediction pipeline, including the best data pre-processing and regression model. In total, we evaluated over 2600 prediction pipelines. We studied our final model by employing results from game theory in the form of Shapley values. Results indicate that predicting fluid intelligence from volume measurements is a challenging task with many challenges. We found that our final ensemble of 50 prediction pipelines associated larger parahippocampal gyrus volumes with lower fluid intelligence, and higher pons white matter volume with higher fluid intelligence.

Notes

Acknowledgements

This research was partially supported by the Bavarian State Ministry of Education, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).

References

  1. 1.
    Barreiro, E., Munteanu, C.R., Cruz-Monteagudo, M., Pazos, A., González-Díaz, H.: Net-net auto machine learning (AutoML) prediction of complex ecosystems. Sci. Rep. 8(1), 12340 (2018)CrossRefGoogle Scholar
  2. 2.
    Caruana, R., Niculescu-Mizil, A.: Ensemble selection from libraries of models. In: Proceedings of the 21st International Conference on Machine Learning, p. 18 (2004)Google Scholar
  3. 3.
    Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28, pp. 2962–2970 (2015)Google Scholar
  4. 4.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefGoogle Scholar
  5. 5.
    Guyon, I., et al.: Analysis of the AutoML challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 177–219. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05318-5_10CrossRefGoogle Scholar
  6. 6.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25566-3_40CrossRefGoogle Scholar
  7. 7.
    Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics, 1–7 (2019) Google Scholar
  8. 8.
    Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl. Stoch. Models Bus. Ind. 17(4), 319–330 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30, pp. 4765–4774 (2017)Google Scholar
  10. 10.
    Orlenko, A., et al.: Considerations for automated machine learning in clinical metabolic profiling: altered homocysteine plasma concentration associated wtih metformin exposure. In: Pacific Symposium on Biocomputing, vol. 23. World Scientific (2017)Google Scholar
  11. 11.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)CrossRefGoogle Scholar
  12. 12.
    Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2018)CrossRefGoogle Scholar
  14. 14.
    Puri, M.: Automated machine learning diagnostic support system as a computational biomarker for detecting drug-induced liver injury patterns in whole slide liver pathology images. Assay Drug Dev. Technol. (2019)Google Scholar
  15. 15.
    Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)CrossRefGoogle Scholar
  16. 16.
    Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sebastian Pölsterl
    • 1
    Email author
  • Benjamín Gutiérrez-Becker
    • 1
  • Ignacio Sarasua
    • 1
  • Abhijit Guha Roy
    • 1
  • Christian Wachinger
    • 1
  1. 1.Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent PsychiatryLudwig Maximilian UniversitätMunichGermany

Personalised recommendations