Advertisement

Fdes for the Characteristic Functionals

  • Wolfgang KollmannEmail author
Chapter

Abstract

The characteristic functionals associated with measures that determine completely the statistical properties of turbulence for an incompressible fluid were introduced in the previous section. The equations governing the evolution of characteristic functionals are derived.

References

  1. 1.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. The MIT Press, Cambridge Mass (1975)Google Scholar
  2. 2.
    Lewis, R.M., Kraichnan, R.H.: A Space-Time Functional Formalism for Turbulence. Comm. Pure Appl. Math. XV, 397–411 (1962)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cartier, P., DeWitt-Morette, C.: Functional Integration: Action and Symmetries. Cambridge University Press, Cambridge U.K (2006)CrossRefGoogle Scholar
  4. 4.
    Simon, B.: Functional Integration and Quantum Physics. AMS Chelsea Publication, Rhode Island (2004)CrossRefGoogle Scholar
  5. 5.
    Klauder, J.R.: A Modern Approach to Functional Integration. Birkhaeuser/Springer, New York (2010)zbMATHGoogle Scholar
  6. 6.
    Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publication, Dordrecht (1988)CrossRefGoogle Scholar
  7. 7.
    Novikov, E.A.: Random-force method in turbulence theory. Sov. Phys. JETP 17, 1449–1454 (1963)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290–1294 (1965)ADSMathSciNetGoogle Scholar
  9. 9.
    Hosokawa, I.: A functional treatise on statistical hydromechanics with random force action. J. Phys. Soc. Jpn 25, 271–278 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    Inoue, A.: Strong and classcal solutions of the Hopf equation—an example of functional derivative equation of second order. Tohoku Math. J. 39, 115–144 (1987)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Education (Asia), Singapore (2005)zbMATHGoogle Scholar
  12. 12.
    Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the navier-stokes equations with one inifinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903–923 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Moser, R.D., Kim, J., Mansour, N.N.: DNS of turbulent channel flow. Phys. Fluids 11, 943–945 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Duffy, D.G.: Greenś Functions with Applications. Chapman & Hall/CRC, Boca Raton, Florida (2001)CrossRefGoogle Scholar
  16. 16.
    Kuksin, S., Shirikyan, A.: Mathematics of Two-dimensional Turbulence, Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, U.K. (2012)CrossRefGoogle Scholar
  17. 17.
    Hopf, E.: Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal. 1, 87–123 (1952)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Janocha, D.D., Waclawcyk, M., Oberlack, M.: Lie symmetry analysis of the Hopf functional-differential equation. Symmetry 7, 1536–1566 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gross, L.: Potential theory on hilbert space. J. Funct. Anal. 1, 123–181 (1967)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dalecky, Y.L., Fomin, S.V.: Measures and Differential Equations in Infinite-Dimensional Space. Kluwer Academic Publication, Dordrecht (1991)CrossRefGoogle Scholar
  21. 21.
    Feller, M.N.: The Lévy-Laplacian. Cambridge University Press (2005)Google Scholar
  22. 22.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, U.K. (2002)zbMATHGoogle Scholar
  23. 23.
    Arsenev, A.A.: Construction of a turbulence measure for the system of Navier-Stokes equations. Math. USSR Sb. 30, 179–186 (1976)CrossRefGoogle Scholar
  24. 24.
    Arsenev, A.A.: On statistical solutions of the Navier-Stokes system of equations. Math. USSR Sb. 38, 31–45 (1981)CrossRefGoogle Scholar
  25. 25.
    Foias, C.: Statistical study of Navier-Stokes equations, I. Rend. Sem. Matem. Padova 48, 219–348 (1972)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Foias, C.: Statistical study of Navier-Stokes equations, II. Rend. Sem. Matem. Padova 49, 9–123 (1973)zbMATHGoogle Scholar
  27. 27.
    Jimenez, J.: Coherent structures in wall-bounded turbulence. JFM 842, P1-1-P1-100 (2018)Google Scholar
  28. 28.
    Cannarso, P., DaPrato, G.: Potential theory in hilbert spaces. In: Proceedings, p. 54. Symposia Appl, Math (1998)Google Scholar
  29. 29.
    Courant, R.: Differential & Integral Calculus. vol. II, Blackie & Sons Ltd, London (1962)Google Scholar
  30. 30.
    Smirnov, V.I.: A Course of Higher Mathematics. vol. II, Pergamon Press, Oxford (1964)Google Scholar
  31. 31.
    Wang, X.: Volumes of generalized unit balls. Math. Mag. 78, 390–395 (2005)CrossRefGoogle Scholar
  32. 32.
    Folland, G.B.: How to integrate a polynomial over a sphere. Am. Math. Month. 108, 446–448 (2001)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Guzman, A.: Derivatives and Integrals of Multivariable Functions. Birkhäuser Boston (2003)Google Scholar
  34. 34.
    Lerner, N.: A Course on Integration Theory. Birkh/"auser/Springer Basel (2014)Google Scholar
  35. 35.
    Bogachev, V.I.: Gaussian Measures, p. 62. American Mathematical Society, Mathematical surveys and monographs vol (1998)Google Scholar
  36. 36.
    Kollmann, W.: Fluid Mechanics in Spatial and Material Description. University Readers, San Diego (2011)Google Scholar
  37. 37.
    Kraichnan, R.H.: Lagrangian history closure for turbulence. Phys. Fluids 8, 575–598 (1968)Google Scholar
  38. 38.
    Constantin, P., Iyer, G.: A stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary. Ann. Appl. Prob. 21, 1466–1492 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge, U.K. (2006)CrossRefGoogle Scholar
  40. 40.
    Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, U.K. (2010)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations