Basic Properties of Turbulent Flows

  • Wolfgang KollmannEmail author


Turbulent flows possess several properties observed in and deduced from experiments and direct numerical simulation (DNS) of the Navier–Stokes equations, which set them apart from three-dimensional and unsteady laminar flows. They will be compiled for later reference and a brief discussion will be given. At the end of the section, a working definition of turbulence is proposed, which is deduced from these properties. Only Newtonian fluids and the idealization of an inviscid fluid will be considered. The spatial description is used throughout this section.


  1. 1.
    Bradshaw, P., Ferriss, D.H., Johnson, R.F.: Turbulence in the noise-producing region of a circular jet. JFM 19, 591–624 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    Oertel Sr., H.: Modern developments in shock tube research. Shock Tube Research Soc. Japan, 488–495 (1975)Google Scholar
  3. 3.
    Hasselblatt, B., Katok, A.: A First Course in Dynamics: With a Panaorama of Recent Developments. Cambridge University Press (2003)Google Scholar
  4. 4.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, Auckland N.Z (1976)zbMATHGoogle Scholar
  5. 5.
    Klauder, J.R.: A Modern Approach to Functional Integration. Birkhaeuser/Springer, New York (2010)zbMATHGoogle Scholar
  6. 6.
    Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publication, Dordrecht (1988)CrossRefGoogle Scholar
  7. 7.
    Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)CrossRefGoogle Scholar
  8. 8.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Education (Asia), Singapore (2005)zbMATHGoogle Scholar
  9. 9.
    Davidson, P.A.: Turbulence. Oxford University Press, Oxford, U.K. (2004)zbMATHGoogle Scholar
  10. 10.
    Sagaut, P., Cambron, C.: Homogeneous Turbulence Dynamics. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  11. 11.
    Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. JFM 173, 357–386 (1986)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Procaccia, I., Brandenburg, A., Jensen, M.H., Vincent, A.: The fractal dimension of iso-vorticity structures in 3-dimensional turbulence. Europhys. Lett. 19, 183–187 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Mandelbrot, B.B.: Comment on Coherent Structures in Fluids, Fractals, and the Fractal Structure of Flow Singularities. Turbulence and Chaotic Phenomena in Fluids, IUTAM. Elsevier Science Publication, North Holland (1984)Google Scholar
  14. 14.
    Mandelbrot, B.B.: Fractals and Chaos: The Mandelbrot set and beyond. Springer, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)CrossRefGoogle Scholar
  16. 16.
    Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana (1954)zbMATHGoogle Scholar
  17. 17.
    Bejan, A.: Advanced Engineering Thermodynamics, 3rd edn. John Wiley & Sons Inc., Hoboken, New Jersey (2006)Google Scholar
  18. 18.
    Gibbon, J.D.: The three-dimensional Euler equations: where do we stand? Physica D 237, 1894–1904 (2008)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kerr, R.M.: The role of singularities in turbulence. In: Kida, S. (ed.) Unstable and Turbulent Motion in Fluids. World Scientific Publishing, SingaporeGoogle Scholar
  20. 20.
    Kerr, R.M.: A new role for vorticity and singular dynamics in turbulence. In: Debnath, L. (ed.) Nonlinear Instability Analysis, vol. II, pp. 15–68. WIT Press, Southhampton U.K. (2001)Google Scholar
  21. 21.
    Beale, J.T., Kato, T., Majda, A.J.: Remarks on the breakdown of smooth solutions for the 3d Euler equations. Comm. Math. Phys. 94, 61–66 (1984)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  23. 23.
    Bustamante, M.D., Kerr, R.M.: 3D Euler about a 2D symmetry plane. Physica D 237, 1912–1920 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Hou, T.Y., Li, R.: Blowup or no blowup ? The interplay between theory and numerics. Physica D 237, 1937–1944 (2008)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    von Karman, T.: On the statistical theory of turbulence. Proc. Nat. Acad. Sci. 23, Washington, 98 (1937)Google Scholar
  27. 27.
    Taylor, G.I.: Statistical theory of turbulence. Proc. Roy. Soc. London 151, 421–478 (1935)ADSCrossRefGoogle Scholar
  28. 28.
    Hinze, J.O.: Turbulence: An introduction to its Mechanism and Theory, 2nd edn. McGraw-Hill (1975)Google Scholar
  29. 29.
    Chapman,G.T. and Tobak, M.: Observations, theoretical Ideas and Modeling of Turbulent Flows—Past, Present and Future. In: Dwoyer et al. (eds.) Theoretical Approaches to Turbulence, pp. 19–49. Springer, New York (1985)CrossRefGoogle Scholar
  30. 30.
    Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press (1989)Google Scholar
  32. 32.
    Corrsin, S.: Theories of turbulent dispersion. In Mecanique de la Turbulence. CNRS publ. 108, 27–52 (1962)Google Scholar
  33. 33.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)zbMATHGoogle Scholar
  34. 34.
    Constantin, P., Foias, C., Temam, R.: Attractors representing turbulent flows. Memoirs Am. Math. Soc. 314 (1985). Am Math. Soc., Providence R.IGoogle Scholar
  35. 35.
    Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Wiley, New York (1994)zbMATHGoogle Scholar
  36. 36.
    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. Americal Math. Soc, Providence, Rhode Island (2002)zbMATHGoogle Scholar
  37. 37.
    Andereck, C.D., Liu, S.S., Swinney, H.L.: Flow regimes between independently rotating cylinders. JFM 164, 155–183 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    Ostilla-Monico, R., Verzicco, R., Grossmann, S., Lohse, D.: The near-wall region of highly turbulent Taylor-Couette flow. JFM 788, 95–117 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. JFM 64, 775–816 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    Castro, I.P.: Dissipative distinctions. JFM 788, 1–4 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. JFM 803, P1–1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer (2001)Google Scholar
  43. 43.
    Balbus, S.A.: When is high Reynolds number shear flow not turbulent? JFM 824, 1–4 (2017)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Lopez, J.M., Avila, M.: Boundary-layer turbulence in experiments on quasi-Keplerian flows. JFM 817, 21–34 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Feigenbaum, M.: The transition to aperiodic behaviour in turbulent systems. Comm. Math. Phys. 77, 65–86 (1980)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford, U.K. (1956)Google Scholar
  47. 47.
    Robinson, J.C.: Parametrization of global attractors, experimental observations, and turbulence. JFM 578, 495–507 (2007)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Tran, C.V.: The number of degrees of freedom of three-dimensional Navier-Stokes turbulence. Phys. Fluids 21, 125103-1 (7) (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Constantin, P., Foias, C., Manley, O.P., Temam, R.: Determining modes and fractal dimension of turbulent flows. JFM 150, 427 (1985)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Constantin, P., Foias, C., Temam, R.: On the dimension of the attractor in two-dimensional turbulence. Physica D 30, 284–296 (1988)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Gibbon, J.D., Galanti, B., Kerr, R.M.: Stretching and compression of vorticity in the 3D euler equations. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations