Advertisement

Navier–Stokes Equations

  • Wolfgang KollmannEmail author
Chapter

Abstract

The dynamics of the Newtonian fluids considered here are determined by the laws of classical mechanics, a selection of references for the derivation of the fundamental pdes from these laws are Lamb [1], Landau and Lifshitz [2], Serrin [3], Majda and Bertozzi [4], Wu et al. [5]. The description and analysis of fully developed turbulent flows is the central theme. Turbulence in superfluids, i.e. liquid helium below the \(\lambda \)-temperature \(T=2.17\) K at atmospheric pressure, exhibits properties similar to turbulence in classical Newtonian fluids for vanishing viscosity, but are also subject to quantum-mechanical phenomena that do not have counterparts in classical fluid mechanics.

References

  1. 1.
    Lamb, H.: Hydrodynamics. 3rd ed. Cambridge University Press (1906)Google Scholar
  2. 2.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford, U.K. (1956)Google Scholar
  3. 3.
    Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R. (ed.) Nonlinear Problems, Symp. Proc., University of Wisconsin Press, p. 69 (1963)Google Scholar
  4. 4.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, U.K. (2002)zbMATHGoogle Scholar
  5. 5.
    Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)CrossRefGoogle Scholar
  6. 6.
    Guénault, A.M.: Basic Superfluids. Taylor & Francis, London, U.K. (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Vinen, W.F.: Superfluid turbulence: experiments, physical principles, and outstanding problems. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 101–108. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  8. 8.
    Donnelly, R.J.: Background on Superfluid turbulence. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 92–100. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  9. 9.
    Skrbek, L.: Quantum turbulence. J. Phys. Conf. Ser. 318, 012004 (2011)CrossRefGoogle Scholar
  10. 10.
    Kollmann, W.: Fluid Mechanics in Spatial and Material Description. University Readers, San Diego (2011)Google Scholar
  11. 11.
    Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge, U.K. (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, U.K. (2002)zbMATHGoogle Scholar
  13. 13.
    Gallavotti, G.: Foundations of Fluid Dynamics. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, Dordrecht (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia, PA (2001)Google Scholar
  16. 16.
    Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press (1995)Google Scholar
  17. 17.
    Oberlack, M.: Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz. Shaker, Aachen, Germany (2000)Google Scholar
  18. 18.
    Oberlack, M., Waclawczyk, M., Rosteck, A., Avsarkisov, V.: Symmetries and their importance for statistical turbulence theory. Bull. JSME 2, 1–72 (2015)Google Scholar
  19. 19.
    Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Von Wahl, W.: The Equations of Navier-Stokes and Abstract Parabolic Equations. Vieweg, Braunschweig (1985)zbMATHCrossRefGoogle Scholar
  21. 21.
    Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press (1988)Google Scholar
  22. 22.
    Kreiss, H.O., Lorentz, J.: Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press (1989)Google Scholar
  23. 23.
    Sohr, H.S.: The Navier-Stokes Equations. Springer, Basel (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Constantin, P.: Euler Equations, Navier-Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows. Lecture Notes in Mathematics, vol. 1871, pp. 1–43 (2006)Google Scholar
  25. 25.
  26. 26.
    Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics: fourier analysis and local energy transfer. Physica D 78, 222–240 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Spalart, P.R.: Numerical Simulation of Boundary Layers. Part 1. Weak Formulation and Numerical Method, NASA TM-88222 (1986)Google Scholar
  29. 29.
    Seregin, G.: Lecture Notes on Regularity Theory for the Navier-Stokes Equations. World Scientific, New Jersey (2015)zbMATHGoogle Scholar
  30. 30.
    Hopf, E.: Uber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachrichten 4, 213–231 (1950)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kiselev, A.A., Ladyshenskaya, O.A.: On existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izvestiya Akad. Nauk SSSR 21, 655 (1957)MathSciNetGoogle Scholar
  32. 32.
    Kuksin, S., Shirikyan, A.: Mathematics of two-dimensional turbulence, Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, U.K. (2012)zbMATHCrossRefGoogle Scholar
  33. 33.
    Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–196 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Pileckas, K.: Navier-Stokes system in domains with cylindrical outlets to infinity. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 4, North Holland, pp. 447–647 (2007)Google Scholar
  35. 35.
    Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)zbMATHCrossRefGoogle Scholar
  36. 36.
    Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publication, Dordrecht (1988)zbMATHCrossRefGoogle Scholar
  37. 37.
    Vishik, M.J.: Asymptotic Behaviour of Solutions of Evolutionary Equations. Cambridge University Press, Lezioni Lincee (1992)zbMATHGoogle Scholar
  38. 38.
    Morse, E.C.: Eigenfunctions of the curl in cylindrical geometry. J. Math. Phys. 46, 113511-1–113511-13 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana (1954)zbMATHGoogle Scholar
  40. 40.
    Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. JFM 64, 775–816 (1974)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Constantin, P.: Analysis of Hydrodynamic Models. CBMS-NSF Regional Conference Series in Applied Mathematics (2017)Google Scholar
  42. 42.
    Ciarlet, P.G.: Mathematical Elasticity: Three-dimensional Elasticity, vol. 1. Elsevier Sci. Pub, Amsterdam, The Netherlands (1988)zbMATHGoogle Scholar
  43. 43.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. The MIT Press, Cambridge Mass (1975)Google Scholar
  44. 44.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, U.K. (2001)zbMATHGoogle Scholar
  45. 45.
    Casey, J., Naghdi, P.M.: On the lagrangian description of vorticity. Arch. Rational Mech. Anal. 115, 1–14 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Vladimirov, V.A., Moffatt, H.K.: On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. JFM 283, 125–139 (2001)ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Milnor, J.: Morse Theory. Princeton University Press (1963)Google Scholar
  48. 48.
    Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annua. Rev. Fluid Mech. 43, 219–245 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. France 43, 837–842 (1982)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Vieillefosse, P.: Internal motion of a small element of fluid in an inviscid flow. Physica A 125, 150–162 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782–793 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Gibbon, J.D., Galanti, B. and Kerr, R.M.: Stretching and compression of vorticity in the 3D euler equations. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics. Cambridge University Press (2000)Google Scholar
  53. 53.
    Wilczek, M., Meneveau, C.: Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. JFM 756, 191–225 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations