Advertisement

Intermittency

  • Wolfgang KollmannEmail author
Chapter

Abstract

The term intermittency is applied to two distinct types of phenomena, externally and internally intermittent flows, [1] Chap. 7.2, Benzi and Biferale [2], Frisch [3], Chap. 8. Townsend [4] and Corrsin [5] observed in experiments on turbulent wakes and jets that turbulence away from the centre of the flow appeared as a random sequence of active bursts and quiescent intervals. Therefore, the flow field contains continuously changing subsets that are turbulent and subsets that are approximately non-turbulent (weakly turbulent), separated by an interface. This phenomenon is called external intermittency.

References

  1. 1.
    Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  2. 2.
    Benzi, R., Biferale, L.: Intermittency in turbulence. In: Oberlack, M., Busse, F.H. (eds.) Theories of Turbulence. Springer, Wien (2002)zbMATHGoogle Scholar
  3. 3.
    Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press (1995)Google Scholar
  4. 4.
    Townsend, A.A.: Local isotropy in the turbulent wake of a cylinder. Austr. J. Sci. Res. 1, 161–174 (1948)ADSGoogle Scholar
  5. 5.
    Kennedy, D.A., Corrsin, S.: Spectral flatness factor and intermittency in turbulence and in non-linear noise. JFM 10, 366–370 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)zbMATHGoogle Scholar
  7. 7.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74, 189–197 (1980)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. JFM 803, P1–1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)zbMATHGoogle Scholar
  10. 10.
    Kusnetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Byggstoyl, S., Kollmann, W.: Stress transport in the rotational and irrotational zones of turbulent shear flows. Phys. Fluids 29, 1423–1429 (1986)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Moffatt, H.K.: Topological approach to problems of vortex dynamics and turbulence. Prog. Astronaut. Aeronaut. 112, 141–152 (1988)Google Scholar
  13. 13.
    Kuo, A.Y.-S., Corrsin, S.: Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. JFM 50, 285–319 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    Sreenivasan, K.R.: On the fine-scale intermittency of turbulence. JFM 151, 81–103 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    Wilczek, M., Xu, H., Ouellette, N.T., Friedrich, R., Bodenschatz, E.: Generation of Lagrangian intermittency in turbulence by a self-similar mechanism. New J. Phys. 15, 055015 (2013)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Mordant, N., Crawford, A.M., Bodenschatz, E.: The 3D structure of the Lagrangean acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations