Integral Transforms and Spectra

  • Wolfgang KollmannEmail author


Integral transforms with respect to time and /or space yield scale information. The main transform tool to be discussed in the present section is Fourier transform between physical and spectral space.


  1. 1.
    Duffy, D.G.: Transform Methods for Solving Partial Differential Equations, 2nd edn. Chapman & Hall/CRC, Boca Raton, Florida (2004)CrossRefGoogle Scholar
  2. 2.
    Daubechies, I.: Orthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Meneveau, C.: Analysis of turbulence in the orthonormal wavelet representation. JFM 232, 469–520 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Annual Rev. Fluid Mech. 42, 473–503 (2010)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4. Academic Press, New York (1964)Google Scholar
  6. 6.
    Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press (1967)Google Scholar
  7. 7.
    Craya, A.: Contribution á l’analyse de la turbulence associée á des vitesses moyennes. P.S.T. Ministere de l’Air, 345 (1958)Google Scholar
  8. 8.
    Lesieur, M.: Turbulence Fluids. Martinus Nijhoff Publishers, Dordrecht (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations