Advertisement

Biomechanical Characteristics of the Countermovement Jump

  • Artur Struzik
Chapter

Abstract

The countermovement jump is the closest to natural human movement among all biomechanical types of jumps and involves the movement of the whole body. Jump height is understood as a maximal lift of the jumping person’s general centre of gravity in the flight phase with respect to the baseline position at the moment of take-off. A proper countermovement jump performance consists of a jump up from the standing position preceded by quick lower limb flexion and taking-off with both legs with an arm swing performed in coordination with other body parts. The key factors that determine the value of the final velocity of take-off and jump height are: the ability to collect and utilize potential elastic energy, the stretch-shortening cycle, the rate of muscle contraction and muscle power. Performing a countermovement before take-off leads to a rapid extension of muscles before contraction, which helps these muscles accumulate potential elastic energy and, consequently, do greater work in the take-off phase. In sport activities, athletes jump at a specific rather than a maximal height, although the target height is often near maximal. Therefore, it seems necessary to conduct research on vertical jumps to different heights rather than only to maximal height.

Keywords

Akimbo Arm swing Biomechanics Countermovement jump Jump height Jumping abilities Motion system Motor abilities Muscle properties Potential elastic energy Stretch-shortening cycle Submaximal performance Take-off velocity Team sport games Vertical jump Work 

References

  1. Aboodarda SJ, Yusof A, Osman NAA et al (2013) Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump. Int J Sports Physiol 8(2):181–187.  https://doi.org/10.1123/ijspp.8.2.181CrossRefGoogle Scholar
  2. Anderson FC, Pandy MG (1993) Storage and utilization of elastic strain energy during jumping. J Biomech 26(12):1413–1427.  https://doi.org/10.1016/0021-9290(93)90092-SCrossRefPubMedGoogle Scholar
  3. Aragón-Vargas LF, Gross MM (1997) Kinesiological factors in vertical jump performance: differences among individuals. J Appl Biomech 13(1):24–44.  https://doi.org/10.1123/jab.13.1.24CrossRefGoogle Scholar
  4. Aura O, Viitasalo JT (1989) Biomechanical characteristics of jumping. J Appl Biomech 5(1):89–98.  https://doi.org/10.1123/ijsb.5.1.89CrossRefGoogle Scholar
  5. Battaglia G, Paoli A, Bellafiore M et al (2014) Influence of a sport-specific training background on vertical jumping and throwing performance in young female basketball and volleyball players. J Sport Med Phys Fit 54(5):581–587Google Scholar
  6. Bobbert MF (1990) Drop jumping as a training method for jumping ability. Sports Med 9(1):7–22.  https://doi.org/10.2165/00007256-199009010-00002CrossRefPubMedGoogle Scholar
  7. Bobbert MF, van Ingen Schenau GJ (1988) Coordination in vertical jumping. J Biomech 21(3):249–262.  https://doi.org/10.1016/0021-9290(88)90175-3CrossRefPubMedGoogle Scholar
  8. Bobbert MF, Gerritsen KGM, Litjens MCA et al (1996) Why is countermovement jump height greater than squat jump height? Med Sci Sport Exer 28(11):1402–1412.  https://doi.org/10.1097/00005768-199611000-00009CrossRefGoogle Scholar
  9. Bober T (1964) The problem of jumping ability in the light of biomechanical analysis. Rozprawy Naukowe Wyższej Szkoły Wychowania Fizycznego we Wrocławiu 3:61–112Google Scholar
  10. Bober T (1968) Cooperation of selected limb joints in maintaining optimum trajectory of movement during take-off. Wychowanie Fizyczne i Sport 12(2):31–39Google Scholar
  11. Bober T (1995) Działanie mięśni w cyklu rozciągnięcie-skurcz a skuteczność techniki sportowej. Sport Wyczynowy 1–2/361–362:40–50Google Scholar
  12. Bober T, Zawadzki J (1993) Pre-stretch chase characteristics and the effectiveness of take-off in vertical jumping. In: Bouisset S, Métral S, Monod S (eds) International society of biomechanics XIVth Congress, 4–8 July, 1993, Paris. Societe de Biomecanique, Paris, pp 190–191Google Scholar
  13. Bober T, Zawadzki J (2006) Biomechanika układu ruchu człowieka. Wydawnictwo BK, WrocławGoogle Scholar
  14. Bober T, Putnam CA, Woodworth GG (1987) Factors influencing the angular velocity of a human limb segment. J Biomech 20(5):511–521.  https://doi.org/10.1016/0021-9290(87)90251-XCrossRefPubMedGoogle Scholar
  15. Bober T, Rutkowska-Kucharska A, Pietraszewski B (2007) Ćwiczenia plyometryczne – charakterystyka biomechaniczna, wskaźniki, zastosowania. Sport Wyczynowy 7–9(511–513):5–23Google Scholar
  16. Buśko K, Lewandowska J, Lipińska M et al (2013) Somatotype-variables related to muscle torque and power output in female volleyball players. Acta Bioeng Biomech 15(2):119–126.  https://doi.org/10.5277/abb130214CrossRefPubMedGoogle Scholar
  17. Croisier J-L, Ganteaume S, Binet J et al (2008) Strength imbalances and prevention of hamstring injury in professional soccer players. Am J Sport Med 36(8):1469–1475.  https://doi.org/10.1177/0363546508316764CrossRefGoogle Scholar
  18. Dyhre-Poulsen P, Simonsen EB, Voigt M (1991) Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man. J Physiol 437(1):287–304.  https://doi.org/10.1113/jphysiol.1991.sp018596CrossRefPubMedPubMedCentralGoogle Scholar
  19. Farley CT, Blickhan R, Saito J et al (1991) Hopping frequency in humans: a test of how springs set frequency in bouncing gaits. J Appl Physiol 71(6):2127–2132.  https://doi.org/10.1152/jappl.1991.71.6.2127CrossRefPubMedGoogle Scholar
  20. Gajewski J, Mazur-Różycka J (2016) The H-reflex as an important indicator in kinesiology. Hum Mov 17(2):64–71.  https://doi.org/10.1515/humo-2016-0018CrossRefGoogle Scholar
  21. Gajewski J, Michalski R, Buśko K et al (2018) Countermovement depth – a variable which clarifies the relationship between the maximum power output and height of a vertical jump. Acta Bioeng Biomech 20(1):127–134.  https://doi.org/10.5277/ABB-01058-2017-02CrossRefPubMedGoogle Scholar
  22. Han J, Waddington G, Adams R et al (2016) Assessing proprioception: a critical review of methods. J Sport Health Sci 5(1):80–90.  https://doi.org/10.1016/j.jshs.2014.10.004CrossRefPubMedGoogle Scholar
  23. Hara M, Shibayama A, Takeshita D et al (2006) The effect of arm swing on lower extremities in vertical jumping. J Biomech 39(13):2503–2511.  https://doi.org/10.1016/j.jbiomech.2005.07.030CrossRefPubMedGoogle Scholar
  24. Hara M, Shibayama A, Takeshita D et al (2008) A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping. Hum Movement Sci 27(4):636–648.  https://doi.org/10.1016/j.humov.2008.04.001CrossRefGoogle Scholar
  25. Harman EA, Rosenstein MT, Frykman PN et al (1990) The effects of arms and countermovement on vertical jumping. Med Sci Sport Exer 22(6):825–833.  https://doi.org/10.1249/00005768-199012000-00015CrossRefGoogle Scholar
  26. Hillier S, Immink M, Thewlis D (2015) Assessing proprioception: a systematic review of possibilities. Neurorehab Neural Re 29(10):933–949.  https://doi.org/10.1177/1545968315573055CrossRefGoogle Scholar
  27. Hof AL (1997) The best jump is the highest jump. J Appl Biomech 13(4):448–451.  https://doi.org/10.1123/jab.13.4.448CrossRefGoogle Scholar
  28. Hudson JL (1990) Performance excellence: drop, stop, pop: keys to vertical jumping. Strategies 3(6):11–14.  https://doi.org/10.1080/08924562.1990.11000256CrossRefGoogle Scholar
  29. Khalid W, Amin M, Bober T (1989) The influence of the upper extremities movement on take-off in vertical jump. In: Tsarouchas L, Terauds J, Gowitzke BA, Holt LE (eds) Biomechanics in sports V: Proceedings of the fifth international symposium of biomechanics in sports, held in 1987 at Athens, Greece. Hellenic Sports Research Institute, Athens, pp 375–379Google Scholar
  30. Komi PV, Gollhofer A (1997) Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech 13(4):451–459.  https://doi.org/10.1123/jab.13.4.451CrossRefGoogle Scholar
  31. Lees A, Vanrenterghem J, De Clercq D (2006) The energetics and benefit of an arm swing in submaximal and maximal vertical jump performance. J Sport Sci 24(1):51–57.  https://doi.org/10.1080/02640410400023217CrossRefGoogle Scholar
  32. Liu Y, Peng C-H, Wei S-H et al (2006) Active leg stiffness and energy stored in the muscles during maximal counter movement jump in the aged. J Electromyogr Kines 16(4):342–351.  https://doi.org/10.1016/j.jelekin.2005.08.001CrossRefGoogle Scholar
  33. Markovic G, Mikulic P (2010) Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med 40(10):859–895.  https://doi.org/10.2165/11318370-000000000-00000CrossRefPubMedGoogle Scholar
  34. McClay IS, Robinson JR, Andriacchi TP et al (1994) A profile of ground reaction forces in professional basketball. J Appl Biomech 10(3):222–236.  https://doi.org/10.1123/jab.10.3.222CrossRefGoogle Scholar
  35. Moran KA, Wallace ES (2007) Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Hum Movement Sci 26(6):824–840.  https://doi.org/10.1016/j.humov.2007.05.001CrossRefGoogle Scholar
  36. Radzińska M, Starosta W (2002) The importance, kinds and structures of the jumping ability and its determining factors. IKF Poznańskiej AWF w Gorzowie, Gorzów WielkopolskiGoogle Scholar
  37. Shadmehr A, Hejazi SM, Olyaei G et al (2016) Effect of countermovement and arm swing on vertical stiffness and jump performance. J Contemp Med Sci 2(5):25–27Google Scholar
  38. Struzik A, Juras G, Pietraszewski B et al (2016a) Effect of drop jump technique on the reactive strength index. J Hum Kinet 52:157–164.  https://doi.org/10.1515/hukin-2016-0003CrossRefPubMedPubMedCentralGoogle Scholar
  39. Struzik A, Zawadzki J, Rokita A (2016b) Leg stiffness and potential energy in the countermovement phase and CMJ jump height. Biomed Hum Kinet 8:39–44.  https://doi.org/10.1515/bhk-2016-0006CrossRefGoogle Scholar
  40. Struzik A, Pietraszewski B, Kawczyński A et al (2017) Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6):1694–1701.  https://doi.org/10.1519/JSC.0000000000001868CrossRefPubMedPubMedCentralGoogle Scholar
  41. Taube W, Leukel C, Gollhofer A (2012) How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev 40(2):106–115.  https://doi.org/10.1097/JES.0b013e31824138daCrossRefPubMedGoogle Scholar
  42. Trzaskoma Z, Trzaskoma Ł (2001) Kompleksowe zwiększanie siły mięśniowej sportowców. Centralny Ośrodek Sportu, WarszawaGoogle Scholar
  43. van Zandwijk JP, Bobbert MF, Munneke M et al (2000) Control of maximal and submaximal vertical jumps. Med Sci Sport Exer 32(2):477–485.  https://doi.org/10.1097/00005768-200002000-00033CrossRefGoogle Scholar
  44. Vanrenterghem J, Lees A, Lenoir M et al (2004) Performing the vertical jump: movement adaptations for submaximal jumping. Hum Movement Sci 22(6):713–727.  https://doi.org/10.1016/j.humov.2003.11.001CrossRefGoogle Scholar
  45. Wilson JM, Flanagan EP (2008) The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res 22(5):1705–1715.  https://doi.org/10.1519/JSC.0b013e31817ae4a7CrossRefPubMedGoogle Scholar
  46. Wilson GJ, Elliott BC, Wood GA (1991) The effect on performance of imposing a delay during a stretch-shorten cycle movement. Med Sci Sport Exer 23(3):364–370.  https://doi.org/10.1249/00005768-199103000-00016CrossRefGoogle Scholar
  47. Zawadzki J (2005) Muscle drive strategy in intense cyclic movements of the forearm. Studia i Monografie Akademii Wychowania Fizycznego we Wrocławiu, no 78. Wydawnictwo Akademii Wychowania Fizycznego, WrocławGoogle Scholar
  48. Zawadzki J, Bober T (1995a) Pure positive action during the take-off in vertical jumping. In: Hakkinen K, Keskinen KL, Komi PV, Mero A (eds) XVth Congress of the international society of biomechanics, 2–6 July, 1995, Jyvaskyla, Book of Abstracts. University of Jyvaskyla, Jyvaskyla, pp 1030–1031Google Scholar
  49. Zawadzki J, Bober T (1995b) Wykorzystanie energii sprężystości w ograniczonym działaniu ekscentrycznym. In: Mazurkiewicz S (ed) Biomechanika’95: Ogólnopolska Konferencja Biomechaniki, Kraków, 20–22 września, 1995 r. Wydawnictwo AWF, Kraków, pp 280–284Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Artur Struzik
    • 1
  1. 1.University School of Physical EducationWrocławPoland

Personalised recommendations