Advertisement

Semantic Labelling and Learning for Parity Game Solving in LTL Synthesis

  • Jan Křetínský
  • Alexander Manta
  • Tobias MeggendorferEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11781)

Abstract

We propose “semantic labelling” as a novel ingredient for solving games in the context of LTL synthesis. It exploits recent advances in the automata-based approach, yielding more information for each state of the generated parity game than the game graph can capture. We utilize this extra information to improve standard approaches as follows. (i) Compared to strategy improvement (SI) with random initial strategy, a more informed initialization often yields a winning strategy directly without any computation. (ii) This initialization makes SI also yield smaller solutions. (iii) While Q-learning on the game graph turns out not too efficient, Q-learning with the semantic information becomes competitive to SI. Since already the simplest heuristics achieve significant improvements the experimental results demonstrate the utility of semantic labelling. This extra information opens the door to more advanced learning approaches both for initialization and improvement of strategies.

References

  1. 1.
    The reactive synthesis competition: SYNTCOMP 2018 results (2018). http://www.syntcomp.org/syntcomp-2018-results/
  2. 2.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_45CrossRefGoogle Scholar
  3. 3.
    Ding, X.C., Lazar, M., Belta, C.: LTL receding horizon control for finite deterministic systems. Automatica 50(2), 399–408 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46520-3_8CrossRefGoogle Scholar
  5. 5.
    Esparza, J., Křetínský, J.: From LTL to deterministic automata: a safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_13CrossRefGoogle Scholar
  6. 6.
    Esparza, J., Křetínský, J., Raskin, J.-F., Sickert, S.: From LTL and limit-deterministic Büchi automata to deterministic parity automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 426–442. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54577-5_25CrossRefGoogle Scholar
  7. 7.
    Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 325–332. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63390-9_17CrossRefGoogle Scholar
  8. 8.
    Fearnley, J.: Efficient parallel strategy improvement for parity games. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 137–154. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63390-9_8CrossRefGoogle Scholar
  9. 9.
    Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04761-9_15CrossRefGoogle Scholar
  10. 10.
    Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017): Benchmarks, participants and results. In: SYNT@CAV (2017)Google Scholar
  11. 11.
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD (2006)Google Scholar
  12. 12.
    Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73368-3_29CrossRefGoogle Scholar
  13. 13.
    Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_66CrossRefGoogle Scholar
  14. 14.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 180–195 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Klein, J., Christel, B.: On-the-fly stuttering in the construction of deterministic \(\omega \)-Automata. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76336-9_7CrossRefGoogle Scholar
  16. 16.
    Křetínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96145-3_30CrossRefGoogle Scholar
  17. 17.
    Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27660-6_8CrossRefGoogle Scholar
  18. 18.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)Google Scholar
  19. 19.
    Křetínský, J., Manta, A., Meggendorfer, T.: Semantic Labelling and Learning for Parity Game Solving in LTL Synthesis. arXiv e-prints, July 2019CrossRefGoogle Scholar
  20. 20.
    Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 578–586. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96145-3_31CrossRefGoogle Scholar
  21. 21.
    Michaud, T., Colange, M.: Reactive synthesis from LTL specification with Spot. In: Proceedings of the 7th Workshop on Synthesis, SYNT@CAV 2018 (2018)Google Scholar
  22. 22.
    Neider, D., Topcu, U.: An automaton learning approach to solving safety games over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 204–221. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49674-9_12CrossRefGoogle Scholar
  23. 23.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS (2006)Google Scholar
  24. 24.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: VMCAI (2006)Google Scholar
  25. 25.
    Safra, S.: On the complexity of \(\omega \)-automata. In: FOCS (1988)Google Scholar
  26. 26.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77050-3_37CrossRefGoogle Scholar
  27. 27.
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00596-1_13CrossRefzbMATHGoogle Scholar
  28. 28.
    Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75596-8_33CrossRefGoogle Scholar
  29. 29.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)Google Scholar
  30. 30.
    Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89960-2_16CrossRefGoogle Scholar
  31. 31.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS (1986)Google Scholar
  32. 32.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722167_18CrossRefGoogle Scholar
  33. 33.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University of MunichMunichGermany

Personalised recommendations