Deep Learning: Concepts and Architectures pp 101-132 | Cite as
Assessment of Autoencoder Architectures for Data Representation
Abstract
Efficient representation learning of data distribution is part and parcel of successful execution of any machine learning based model. Autoencoders are good at learning the representation of data with lower dimensions. Traditionally, autoencoders have been widely used for data compression in order to represent the structural data. Data compression is one of the most important tasks in applications based on Computer Vision, Information Retrieval, Natural Language Processing, etc. The aim of data compression is to convert the input data into smaller representation retaining the quality of input data. Many lossy and lossless data compression techniques like Flate/deflate compression, Lempel–Ziv–Welch compression, Huffman compression, Run-length encoding compression, JPEG compression are available. Similarly, autoencoders are unsupervised neural networks used for representing the structural data by data compression. Due to wide availability of high-end processing chips and large datasets, deep learning has gained a lot attention from academia, industries and research centers to solve multitude of problems. Considering the state-of-the-art literature, autoencoders are widely used architectures in many deep learning applications for representation and manifold learning and serve as popular option for dimensionality reduction. Therefore, this chapter aims to shed light upon applicability of variants of autoencoders to multiple application domains. In this chapter, basic architecture and variants of autoencoder viz. Convolutional autoencoder, Variational autoencoder, Sparse autoencoder, stacked autoencoder, Deep autoencoder, to name a few, have been thoroughly studied. How the layer size and depth of deep autoencoder model affect the overall performance of the system has also been discussed. We also outlined the suitability of various autoencoder architectures to different application areas. This would help the research community to choose the suitable autoencoder architecture for the problem to be solved.
Keywords
Autoencoders Deep learning Dimensionality reduction Representation learning Data representationReferences
- 1.Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)CrossRefGoogle Scholar
- 2.Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)Google Scholar
- 3.Pathak, A.R., Pandey, M., Rautaray, S.: Adaptive framework for deep learning based dynamic and temporal topic modeling from big data. Recent Pat. Eng. 13, 1 (2019). https://doi.org/10.2174/1872212113666190329234812CrossRefGoogle Scholar
- 4.Pathak, A.R., Pandey, M., Rautaray, S.: Adaptive model for dynamic and temporal topic modeling from big data using deep learning architecture. Int. J. Intell. Syst. Appl. 11(6), 13–27 (MECS-Press)Google Scholar
- 5.Pathak, A.R., Pandey, M., Rautaray, S., Pawar, K.: Assessment of object detection using deep convolutional neural networks. In: Bhalla, S., Bhateja, V., Chandavale, A.A., Hiwale, A.S., Satapathy, S.C. (eds.) Intelligent Computing and Information and Communication, pp. 457–466. Springer Singapore (2018)CrossRefGoogle Scholar
- 6.Pathak, A.R., Pandey, M., Rautaray, S.: Deep learning approaches for detecting objects from images: a review. In: Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.) Progress in Computing, Analytics and Networking, pp. 491–499. Springer Singapore (2018)Google Scholar
- 7.Pathak, A.R., Pandey, M., Rautaray, S.: Application of deep learning for object detection. Procedia Comput. Sci. 132, 1706–1717 (2018)CrossRefGoogle Scholar
- 8.Pawar, K., Attar, V.: Deep learning approaches for video-based anomalous activity detection. World Wide Web 22, 571–601 (2019)CrossRefGoogle Scholar
- 9.Pawar, K., Attar, V.: Deep Learning approach for detection of anomalous activities from surveillance videos. In: CCIS. Springer (2019, in Press)Google Scholar
- 10.Khare, K., Darekar, O., Gupta, P., Attar, V.Z.: Short term stock price prediction using deep learning. In: 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 482–486 (2017)Google Scholar
- 11.Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Kurtz, K.J.: The divergent autoencoder (DIVA) model of category learning. Psychon. Bull. Rev. 14, 560–576 (2007)CrossRefGoogle Scholar
- 13.Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016). https://doi.org/10.23915/distill.00003
- 14.Zhang, Z., et al: Depth-based subgraph convolutional auto-encoder for network representation learning. Pattern Recognit. (2019)Google Scholar
- 15.Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). http://arxiv.org/abs/1406.1078
- 16.Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852 (2015)Google Scholar
- 17.Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)Google Scholar
- 18.Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2007)Google Scholar
- 19.Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area V2. In: Advances in Neural Information Processing Systems, pp. 873–880 (2008)Google Scholar
- 20.Zou, W.Y., Ng, A.Y., Yu, K.: Unsupervised learning of visual invariance with temporal coherence. In: NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, vol. 3 (2011)Google Scholar
- 21.Jiang, X., Zhang, Y., Zhang, W., Xiao, X.: A novel sparse auto-encoder for deep unsupervised learning. In 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI), pp. 256–261 (2013)Google Scholar
- 22.Le, Q.V., et al.: Building high-level features using large scale unsupervised learning (2011). http://arxiv.org/abs/1112.6209
- 23.Chen, J., et al.: Cross-covariance regularized autoencoders for nonredundant sparse feature representation. Neurocomputing 316, 49–58 (2018)CrossRefGoogle Scholar
- 24.Goroshin, R., LeCun, Y.: Saturating auto-encoders (2013). http://arxiv.org/abs/1301.3577
- 25.Liu, W., Ma, T., Tao, D., You, J.H.S.A.E.: A Hessian regularized sparse auto-encoders. Neurocomputing 187, 59–65 (2016)CrossRefGoogle Scholar
- 26.Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 833–840 (2011)Google Scholar
- 27.Rifai, S., et al.: Higher order contractive auto-encoder. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 645–660 (2011)CrossRefGoogle Scholar
- 28.Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15, 3563–3593 (2014)MathSciNetzbMATHGoogle Scholar
- 29.Mesnil, G., et al.: Unsupervised and transfer learning challenge: a deep learning approach. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, vol. 27, pp. 97–111 (2011)Google Scholar
- 30.Konda, K., Memisevic, R., Krueger, D.: Zero-bias autoencoders and the benefits of co-adapting features (2014). http://arxiv.org/abs/1402.3337
- 31.Makhzani, A., Frey, B.: K-sparse autoencoders (2013). http://arxiv.org/abs/1312.5663
- 32.Makhzani, A., Frey, B.J.: Winner-take-all autoencoders. In: Advances in Neural Information Processing Systems, pp. 2791–2799 (2015)Google Scholar
- 33.Ng, A.: Sparse Autoencoder. CS294A Lecture Notes, vol. 72, pp. 1–19 (2011)Google Scholar
- 34.Liang, K., Chang, H., Cui, Z., Shan, S., Chen, X.: Representation learning with smooth autoencoder. In: Asian Conference on Computer Vision, pp. 72–86 (2014)CrossRefGoogle Scholar
- 35.Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: The deep kernelized autoencoder. Appl. Soft Comput. 71, 816–825 (2018)CrossRefGoogle Scholar
- 36.Majumdar, A.: Graph structured autoencoder. Neural Netw. 106, 271–280 (2018)CrossRefGoogle Scholar
- 37.Sankaran, A., Vatsa, M., Singh, R., Majumdar, A.: Group sparse autoencoder. Image Vis. Comput. 60, 64–74 (2017)CrossRefGoogle Scholar
- 38.Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)Google Scholar
- 39.Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
- 40.Ferles, C., Papanikolaou, Y., Naidoo, K.J.: Denoising autoencoder self-organizing map (DASOM). Neural Netw. 105, 112–131 (2018)CrossRefGoogle Scholar
- 41.Chen, M., Weinberger, K., Sha, F., Bengio, Y.: Marginalized denoising auto-encoders for nonlinear representations. In: International Conference on Machine Learning, pp. 1476–1484 (2014)Google Scholar
- 42.Maheshwari, S., Majumdar, A.: Hierarchical autoencoder for collaborative filtering. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2018)Google Scholar
- 43.Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). http://arxiv.org/abs/1312.6114
- 44.Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders (2015). http://arxiv.org/abs/1509.00519
- 45.Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). http://arxiv.org/abs/1511.05644
- 46.Wang, X., Peng, D., Hu, P., Sang, Y.: Adversarial correlated autoencoder for unsupervised multi-view representation learning. Knowl. Based Syst. (2019)Google Scholar
- 47.Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders (2017). http://arxiv.org/abs/1711.01558
- 48.Kim, Y., Zhang, K., Rush, A.M., LeCun, Y., et al.: Adversarially regularized autoencoders (2017). http://arxiv.org/abs/1706.04223
- 49.Yan, X., Chang, H., Shan, S., Chen, X.: Modeling video dynamics with deep dynencoder. In: European Conference on Computer Vision, pp. 215–230 (2014)CrossRefGoogle Scholar
- 50.Zhao, J., Mathieu, M., Goroshin, R., Lecun, Y.: Stacked what-where auto-encoders (2015). http://arxiv.org/abs/1506.02351
- 51.LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
- 52.Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. IEEE (2010)Google Scholar
- 53.Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat., 400–407 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980
- 55.Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
- 56.Le, Q.V., et al.: On optimization methods for deep learning. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 265–272 (2011)Google Scholar
- 57.Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cogn. Model. 5, 1 (1988)Google Scholar
- 58.Hinton, G.E., McClelland, J.L.: Learning representations by recirculation. In: Neural Information Processing Systems, pp. 358–366 (1988)Google Scholar
- 59.Zhou, Y., Arpit, D., Nwogu, I., Govindaraju, V.: Is joint training better for deep auto-encoders? (2014). http://arxiv.org/abs/1405.1380
- 60.Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maximum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–6720 (2014)Google Scholar
- 61.Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy (2017). http://arxiv.org/abs/1710.10686
- 62.Lamb, A., Dumoulin, V., Courville, A.: Discriminative regularization for generative models (2016). http://arxiv.org/abs/1602.03220
- 63.Kamyshanska, H., Memisevic, R.: The potential energy of an autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1261–1273 (2015)CrossRefGoogle Scholar
- 64.Kamyshanska, H., Memisevic, R.: On autoencoder scoring. In: International Conference on Machine Learning, pp. 720–728 (2013)Google Scholar
- 65.Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Advances in Neural Information Processing Systems, pp. 950–957 (1992)Google Scholar
- 66.Fan, Y.J.: Autoencoder node saliency: selecting relevant latent representations. Pattern Recognit. 88, 643–653 (2019)CrossRefGoogle Scholar
- 67.LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Neural Networks: Tricks of the Trade, pp 9–48. Springer (2012)Google Scholar
- 68.Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, pp. 971–980 (2017)Google Scholar
- 69.Leonard, M.: Deep Learning Nanodegree Foundation Course. Lecture Notes in Autoencoders. Udacity (2018)Google Scholar
- 70.Xiong, Y., Zuo, R.: Recognition of geochemical anomalies using a deep autoencoder network. Comput. Geosci. 86, 75–82 (2016)CrossRefGoogle Scholar
- 71.Leng, B., Guo, S., Zhang, X., Xiong, Z.: 3D object retrieval with stacked local convolutional autoencoder. Sig. Process. 112, 119–128 (2015)CrossRefGoogle Scholar
- 72.Ribeiro, M., Lazzaretti, A.E., Lopes, H.S.: A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recognit. Lett. 105, 13–22 (2018)CrossRefGoogle Scholar
- 73.Li, L., Li, X., Yang, Y., Dong, J.: Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder. Sustain. Cities Soc. 45, 588–595 (2019)CrossRefGoogle Scholar
- 74.Wan, X., Zhao, C., Wang, Y., Liu, W.: Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features. Infrared Phys. Technol. 86, 77–89 (2017)CrossRefGoogle Scholar
- 75.McCoy, J.T., Kroon, S., Auret, L.: Variational autoencoders for missing data imputation with application to a simulated milling circuit. IFAC PapersOnLine 51, 141–146 (2018)CrossRefGoogle Scholar
- 76.Wu, C., et al.: Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowl. Based Syst. 165, 30–39 (2019)CrossRefGoogle Scholar
- 77.Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: European Conference on Computer Vision, pp. 1–16 (2014)Google Scholar
- 78.Masci, J., Meier, U., Cirecsan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks, pp. 52–59 (2011)Google Scholar
- 79.Liou, C.-Y., Cheng, W.-C., Liou, J.-W., Liou, D.-R.: Autoencoder for words. Neurocomputing 139, 84–96 (2014)CrossRefGoogle Scholar
- 80.Carreira-Perpinan, M.A., Raziperchikolaei, R.: Hashing with binary autoencoders. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
- 81.Pan, S., et al.: Adversarially regularized graph autoencoder for graph embedding (2018). http://arxiv.org/abs/1802.04407
- 82.Li, M., et al.: GRAINS: generative recursive autoencoders for INdoor scenes. ACM Trans. Graph. 38, 12:1–12:16 (2019)CrossRefGoogle Scholar
- 83.Alaverdyan, Z., Chai, J., Lartizien, C.: Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: application to epilepsy detection. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 210–217. Springer (2018)Google Scholar
- 84.Hou, L., et al.: Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 86, 188–200 (2019)CrossRefGoogle Scholar
- 85.Ullah, A., Muhammad, K., Haq, I.U., Baik, S.W.: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments. Futur. Gener. Comput. Syst. (2019)Google Scholar
- 86.Zhao, C., Zhang, L.: Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection. Infrared Phys. Technol. 92, 166–176 (2018)CrossRefGoogle Scholar
- 87.Singh, M., Nagpal, S., Vatsa, M., Singh, R.: Are you eligible? Predicting adulthood from face images via class specific mean autoencoder. Pattern Recognit. Lett. 119, 121–130 (2019)CrossRefGoogle Scholar
- 88.Tasnim, S., Rahman, A., Oo, A.M.T., Haque, M.E.: Autoencoder for wind power prediction. Renewables Wind. Water Sol. 4, 6 (2017)Google Scholar
- 89.Lv, S.-X., Peng, L., Wang, L.: Stacked autoencoder with echo-state regression for tourism demand forecasting using search query data. Appl. Soft Comput. 73, 119–133 (2018)CrossRefGoogle Scholar
- 90.Xie, R., Wen, J., Quitadamo, A., Cheng, J., Shi, X.: A deep auto-encoder model for gene expression prediction. BMC Genom. 18, 845 (2017)CrossRefGoogle Scholar
- 91.Zhang, J., Li, K., Liang, Y., Li, N.: Learning 3D faces from 2D images via stacked contractive autoencoder. Neurocomputing 257, 67–78 (2017)CrossRefGoogle Scholar
- 92.Gareis, I.E., Vignolo, L.D., Spies, R.D., Rufiner, H.L.: Coherent averaging estimation autoencoders applied to evoked potentials processing. Neurocomputing 240, 47–58 (2017)CrossRefGoogle Scholar
- 93.Mehta, J., Majumdar, A.: RODEO: robust DE-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit. 63, 499–510 (2017)CrossRefGoogle Scholar
- 94.Liu, Y., Feng, X., Zhou, Z.: Multimodal video classification with stacked contractive autoencoders. Sig. Process. 120, 761–766 (2016)CrossRefGoogle Scholar
- 95.Zhang, Z., et al.: Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification. EURASIP J. Audio Speech Music Process. 2015, 12 (2015)Google Scholar
- 96.Makkie, M., Huang, H., Zhao, Y., Vasilakos, A.V., Liu, T.: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics. Neurocomputing 325, 20–30 (2019)CrossRefGoogle Scholar
- 97.Guo, Q., et al.: Learning robust uniform features for cross-media social data by using cross autoencoders. Knowl. Based Syst. 102, 64–75 (2016)CrossRefGoogle Scholar
- 98.Su, J., et al.: A neural generative autoencoder for bilingual word embeddings. Inf. Sci. (Ny) 424, 287–300 (2018)MathSciNetCrossRefGoogle Scholar
- 99.Gianniotis, N., Kügler, S.D., Tino, P., Polsterer, K.L.: Model-coupled autoencoder for time series visualization. Neurocomputing 192, 139–146 (2016)CrossRefGoogle Scholar
- 100.Hwang, U., Park, J., Jang, H., Yoon, S., Cho, N.I.: PuVAE: a variational autoencoder to purify adversarial examples (2019). http://arxiv.org/abs/1903.00585CrossRefGoogle Scholar