Human Influence Versus Natural Climate Variability

  • Nuria Torrescano-ValleEmail author
  • Pablo J. Ramírez-Barajas
  • Gerald A. Islebe
  • Alejandro A. Vela-Pelaez
  • William J. Folan


This chapter discusses past climate change drivers and ecological responses in southeastern Mexico. Ancient human influence on ecosystems is evident from sediment cores. Past human activities are evident in fossil records but make the interpretation of the past climatic signals more difficult. Conversely the human signal provides important evidence for understanding the level of human impact on the climate system and ecosystems. Four sediment cores at different locations of the Yucatán Peninsula were analyzed for fossil pollen and geochemistry. Human-induced ecological change was evaluated compared to climate-driven environmental change. Fossil pollen gave a clear signal of landscape and precipitation change in the Preclassic and Classic periods. The geochemical ratios provided evidence of local and regional hydrological change. The Chumpich Lake registry reveals that the management of low forests was efficient and indicates good hydrological control in the landscape. However this evidence is different in other sites from Yucatán Peninsula with deficient erosion control. Probably due to the differential climate response in the Chumpich–Uxul region, the drought was not as drastic as in other places.


Fossil pollen Geochemistry Yucatán Peninsula 



Conacyt is acknowledged for funding of several projects. We appreciate the technical and financial support of Nicolai Grube through UXUL Project. We acknowledge the review of the present chapter to Dr. Joel Gunn.


  1. Akers PD, Brook GA, Railsback LB et al (2016) An extended and higher resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeogr Palaeoclimatol Palaeoecol 459:268–288CrossRefGoogle Scholar
  2. Alexander RT (2000) Patrones de asentamiento agregados en el Sudoeste de Campeche, Una visión desde la Isla Cilvituk. Mesoam 39:359–391Google Scholar
  3. Anderson DG, Maasch KA, Sandweiss DH et al (2007) Climate and culture change: exploring Holocene transitions. In: Anderson DG, Maasch KA, Sandweiss (eds) Climate change and cultural dynamics: a global perspective on mid-Holocene transitions. Elsevier Inc, pp 1–23. San Diego, CA, USAGoogle Scholar
  4. Aragón-Moreno AA, Islebe GA, Torrescano-Valle N (2012) A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev Palaeobot Palynol 178:35–42CrossRefGoogle Scholar
  5. Beach T (1998) Soil constraints on northwest Yucatán: pedo-archaeology and Maya subsistence at Chunchucmil. Geoarchaeology 13:759–791CrossRefGoogle Scholar
  6. Beach T, Dunning NP, Luzzadder-Beach S et al (2006) Ancient Maya. Impacts on soils and soil erosion. Catena 65:166–178CrossRefGoogle Scholar
  7. Beach T, Luzzadder-Beach S, Dunning N et al (2009) A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat Sci Rev 28:1710–1724. Scholar
  8. Birks HJB (2012) Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int J Biodivers Sci Ecosyst Serv Manag 8(4):292–304. Scholar
  9. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474. download/pdf_1/ Scholar
  10. Boserup E (1965) The conditions of agricultural growth: the economics of agrarian change under population pressure. Aldine Publishing, Chicago, p 124Google Scholar
  11. Brenner M, Rosenmeier MF, Hodell DA et al (2002) Paleolimnology of the Maya Lowlands. Anc Mesoam 13:141–157CrossRefGoogle Scholar
  12. Brooks N (2006) Cultural responses to aridity in the middle Holocene and increased social complexity. Quat Int 151:29–49CrossRefGoogle Scholar
  13. Buckler ES, Stevens NM (2006) Maize origins, domestication, and selection. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 67–90Google Scholar
  14. Büntgen U, Myglan VS, Ljungqvist FC et al (2016) Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat Geosci 9:231CrossRefGoogle Scholar
  15. Carrillo-Bastos A, Islebe GA, Torrescano-Valle N et al (2010) Holocene vegetation and climate history of central Quintana Roo, Yucatán Península, Mexico. Rev Palaeobot Palynol 160:189–196CrossRefGoogle Scholar
  16. Carrillo-Bastos A, Islebe GA, Torrescano-Valle N (2013) 3800 years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS One 8(12) . Public Library of Science):e84333PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caseldine CJ, Turney C (2010) The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. J Quat Sci 25(1):88–93. Scholar
  18. Chepstow-Lusty AJ, Frogley MR, Bauer BS et al (2009) Putting the rise of the Inca Empire within a climatic and land management context. Clim Past 5:375–388CrossRefGoogle Scholar
  19. Chew SC (2007) The recurring dark ages: ecological stress, climatechanges, and system transformation. Altimira Press, LanhamGoogle Scholar
  20. Clark JE, Gibson JL, Zeidler JA (2010) First towns in the Americas: searching for agricultura and other enabling conditions. In: Bandy M, Fox J (eds) Becoming villagers: comparing early village societies. Amerind studies in archaeology. The University of Arizona Press, Tucson, pp 205–245Google Scholar
  21. Conroy JL, Overpeck JT, Cole JE et al (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180CrossRefGoogle Scholar
  22. Coombes P, Barber K (2005) Environmental determinism in Holocene research: causality or coincidence? Area 37(3):303–311CrossRefGoogle Scholar
  23. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277PubMedCrossRefPubMedCentralGoogle Scholar
  24. Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47CrossRefGoogle Scholar
  25. Day JW, Folan WJ, Gunn JD, Yanez- Aranciabia A (2004) Patrones de productividad costera durante el ascenso del nivel del mar postglacial: Posibles implicacions para la formación del estado pristino. In XIV Encuentro Internacional: Los Investigadores de la Cultura Maya. CampecheGoogle Scholar
  26. Day JW, Gunn JD, Folan WJ, Yáñez-Arancibia A et al (2007) Emergence of complex societies after sea level stabilized. EOS Trans Am Geophys Union 88(15):170–171CrossRefGoogle Scholar
  27. Day JW, Gunn JD, Folan WJ, Yáñez-Arancibia A et al (2012) The influence of enhanced post-glacial coastal margin productivity on the emergence of complex societies. J Island Coast Archaeol 7(1):23–52. Scholar
  28. Delcourt PA, Delcourt HR (1998) Paleoecological insights on conservation of biodiversity: a focus on species, ecosystems, and landscapes. Ecol Appl 8(4):921–934Google Scholar
  29. deMenocal PB (2001) Cultural responses to climate change during the late holocene. Science 292:667–673. Scholar
  30. deMenocal P, Ortiz J, Guilderson T et al (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361CrossRefGoogle Scholar
  31. Diamond J (2009) Maya, Khmer and Inca. Nature 461(24):470–480Google Scholar
  32. Douglas PMJ, Pagani M, Canuto MA et al (2015) Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. PNAS 112(8):5607–5612PubMedCrossRefPubMedCentralGoogle Scholar
  33. Douglas PMJ, Demarest AA, Brenner M et al (2016) Impacts of climate change on the collapse of Lowland Maya civilization. Annu Rev Earth Planet Sci 44:613–645CrossRefGoogle Scholar
  34. Douglas PMJ, Pagani M, Canuto MA, Brenner M, Hodell DA, Eglinton TI, Curtis JH (2014) Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. PNAS112(18):5607–5612Google Scholar
  35. Dunning NP, Beach T (2000) Stability and instability in prehispanic Maya landscapes. In: Lentz D (ed) An imperfect balance: landscape transformations in the pre-Columbian Americas. Columbia University Press, New York, pp 179–202Google Scholar
  36. Dunning NP, Rue D, Beach T et al (1998) Humaneenvironmental interactions in a tropical watershed: the paleoecology of Laguna Tamarindito, El Petén, Guatemala. J Field Archaeol 25:139–151Google Scholar
  37. Dunning NP, Beach TP, Luzzadder-Beach S (2012) Kax and kol: collapse and resilience in lowland Maya civilization. PNAS 109:3652–3657. Scholar
  38. Erickson CL (1999) Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73:634–642CrossRefGoogle Scholar
  39. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Munksgaard, Copenhagen, p 328Google Scholar
  40. Gill RB (2008) Las grandes Sequías mayas. Agua, Vida y Muerte. Fondo de Cultura Económica, México. p 561Google Scholar
  41. Gregory BRB, Peros M, Reinhardt E et al (2015) Middle-late Holocene Caribbean aridity inferred from foraminifera and elemental data in sediment cores from two Cuban lagoons. Palaeogeogr Palaeoclimatol Palaeoecol 426:229–241CrossRefGoogle Scholar
  42. Grimm E (2011) Tilia 1.7.16. Illinois State Museum. Research and Collection CenterGoogle Scholar
  43. Grube N, Delvendahl K (2016) In the wake of the great. Humanit Soc Sci 38(1):16–22. Scholar
  44. Grube N, Delvendahl K, Seefeld N et al (2012) Under the rule of the snake kings: Uxul in the 7th and 8th centures. Estudios de la Cultura Maya XL:11–49Google Scholar
  45. Gunn J, Folan WJ, Robichaux HR (1995) A landscape analysis of the Candelaria watershed in Mexico: insights into paleoclimates affecting upland horticulture in the southern Yucatan Peninsula Semi-Karst. Geoarchaeology 10:3–42. Scholar
  46. Gunn JD, JWJr D, Folan W et al (2019) Geo‑cultural time: advancing human societal complexity within worldwide constraint bottlenecks—a chronological/helical approach to understanding human–planetary interactions. BioPhys Econ Resour Qual 4:10. Scholar
  47. Gutiérrez-Ayala LV, Torrescano-Valle N, Islebe GA (2012) Reconstrucción paleoambiental del Holoceno tardío de la reserva Los Petenes, Península de Yucatán, México. Revista Mexicana de Ciencias Geológicas 29(3):749–763Google Scholar
  48. Harrison PD (1990) The revolution in ancient Maya subsistence. In: Clancy FS, Harrison PD (eds) Vision and revision in Maya studies. University of New Mexico Press, Albuquerque, pp 99–113Google Scholar
  49. Hastenrath S (1984) Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Am Meteorol Soc 112:1097–1107Google Scholar
  50. Hodell DA, Curtis JH, Brenner M (1995) Possible role of climatic change in the collapse of the Maya civilization. Nature 375:391–394CrossRefGoogle Scholar
  51. Hodell DA, Brenner M, Curtis JH (2000) Climate change in the Northern American tropics and subtropics since the last Ice Age: implications for environment and culture. In: Lentz DL (ed) Imperfect balance. Landscape transformations in the Precolumbian Americas. Columbia University Press, New York, pp 13–38Google Scholar
  52. Hodell DA, Brenner M, Curtis JH et al (2001) Frequency in the Maya lowlands. Science 292:1367–1370CrossRefGoogle Scholar
  53. Hodell DA, Brenner M, Curtis JH (2005) Terminal classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev 24:1413–1427CrossRefGoogle Scholar
  54. Hodell DA, Brenner M, Curtis JH (2007) Climate and cultural history of the northeastern Yucatan Peninsula, Quintana Roo, Mexico. Clim Chang 83:215–240CrossRefGoogle Scholar
  55. Islebe GA, Hooghiemstra H, Brenner M et al (1996) A Holocene vegetation history from lowland Guatemala. The Holocene 6(3):265–271CrossRefGoogle Scholar
  56. Johnston KJ (2003) The intensification of pre-industrial cereal agriculture in the tropics: Boserup, cultivation lengthening, and the Classic Maya. J Anthropol Archaeol 22:126–161. Scholar
  57. Johnston KJ (2006) La intensificación de la agricultura Maya Clásica. In: Laporte JP, Arroyo B, Mejía H (eds) XIX Simposio de Investigaciones Arqueológicas en Guatemala 2005. Museo Nacional de Arqueología y Etnología, Guatemala, pp 1090–1100Google Scholar
  58. Kennett DJ, Breitenbach SFM, Aquino VV et al (2012) Development and disintegration of Maya political systems in response to climate change. Science 338(6108):788–791PubMedCrossRefPubMedCentralGoogle Scholar
  59. LaRocque A, Leblon B, Ek J (2019) Detection of potential large Maya settlements in the northern Petén área (State of Campeche, Mexico) using optical and radar remote sensing. J Archaeol Sci 23:80–97Google Scholar
  60. Lentz DL, Magee K, Weaver E et al (2015) Agroforestry and agricultural practices of the ancient Maya at Tikal. In: Lentz DL, Dunning NP, Scarborough V (eds) Tikal, paleoecology of an ancient Maya City. Cambridge University Press, Cambridge, pp 152–186CrossRefGoogle Scholar
  61. Leyden B, Brenner M, Whitmore T et al (1996) A record of long-and short-term climatic variation from Northwest Yucatán: Cenote San José Chulchacá. In: Fedick SL (ed) The managed mosaic: ancient Maya agriculture and resource use. University of Utah Press, Salt Lake City, pp 30–50Google Scholar
  62. Leyden BW, Brenner B, Dahlin BH (1998) Cultural and climatic history of Cobá, a lowland Maya city in Quintana Roo, Mexico. Quat Res 49:111–122CrossRefGoogle Scholar
  63. Lohse JC (2010) Archaic origins of the Lowland Maya. Lat Am Antiq 21(3):312–352CrossRefGoogle Scholar
  64. Lozano-García S, Ortega B, Roy PD et al (2015) Climatic variability in the northern sector of the American tropics since the latest MIS 3. Quat Res 84(2):262–271CrossRefGoogle Scholar
  65. Manzanilla L (1997) The impact of climatic change on past civilizations. A revisionist agenda for futher investigation. Quat Int 43/44:153–159CrossRefGoogle Scholar
  66. Marín-Stillman LE, Pacheco-Avíla JG, Méndez-Ramos R (2004) Hidrogeología de la peninsula de Yucatán. In: Jímenez B, Marín L (eds) El agua en México vista desde la academia. Academia Mexicana de Ciencias. p 403Google Scholar
  67. Matsouka Y, Vigouroux Y, Goodman MM, Sanchez GS, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99(9):6080–6084. Scholar
  68. Mayewski PA, Rohling EE, Curt Stager J et al (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  69. Medina-Elizalde M, Burns SJ, Polanco-Martínez JM et al (2016) High-resolution speleothem record of precipitation from the Yucatan Peninsula spanning the Maya Preclassic Period. Glob Planet Chang 138:93–102CrossRefGoogle Scholar
  70. Metcalfe S, Jones MD, Davies SJ et al (2010) Climate variability over the last two millennia in the North American monsoon region, recorded in laminated lake sediments from Laguna Juanacatlán México. The Holocene 20:1195–1206CrossRefGoogle Scholar
  71. Milne GA, Long AJ, Bassett SE (2005) Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24:1183–1202CrossRefGoogle Scholar
  72. Mueller AD, Islebe GA, Anselmetti FS et al (2010) Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38(6):523–526CrossRefGoogle Scholar
  73. Nakagawa T, Brugiapaglia E, Digerfelti G et al (1998) Dense media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27(1):15–24CrossRefGoogle Scholar
  74. Nooren CAM, Hoek WZ, Tebbens LA et al (2009) Tephrochronological evidence for the late Holocene eruption history of El Chichón Volcano, Mexico. Geofis Int 48(1):97–112Google Scholar
  75. Ojeda-Mas H, Súarez-Aguilar V, Peña-Castillo A (1996) Cilvituk, una economía lacustre: avance de investigación. Investigadores de la cultura Maya. Tomo II. Universidad Autónoma Campeche 450–478Google Scholar
  76. OriginLab (2016) © Corporation. All rights reserved.
  77. Perez L, Bugja R, Lorenschat J, Brenner M et al (2011) Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661(1):407–433. Scholar
  78. Pohl MED, Pope KO, Jones JG et al (1996) Early agriculture in the Maya Lowlands. Lat Am Antiq 7(4):355–372CrossRefGoogle Scholar
  79. Pohl MED, Piperno DR, Pope KO et al (2007) Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Adnrés, Tabasco, Mexico. PNAS 104(16):6870–6875PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rosenswing RM, Pearsall DM, Masson MA et al (2014) Archaic period settlement and subsistence in the Maya Lowlands: new starch grain and lithic data from Freshwater Creek, Belize. J Archaeol Sci 41:308–321CrossRefGoogle Scholar
  81. Roy PD, Jonathan MP, Pérez-Cruz LL et al (2012) A millennial-scale Late Pleistocene–Holocene palaeoclimatic record from the western Chihuahua Desert, Mexico. Boreas 41:707–718CrossRefGoogle Scholar
  82. Roy PD, Quiroz-Jiménez JD, Pérez-Cruz LL et al (2013) Late Quaternary paleohydrológical conditions in the dryland of northern Mexico: a summer precipitation proxy record of the last 80 cal ka BP. Quat Sci Rev 78:342–354CrossRefGoogle Scholar
  83. Roy PD, Chávez-Lara CM, Beramendi-Orosco LE et al (2015) Pleohydrology of the Santiaguillo Basin (Mexico) since late last glacial and climate variation in southern part of western subtropical North America. Quat Res 84:335–347CrossRefGoogle Scholar
  84. Roy PD, Rivero-Navarrete A, Sánchez-Zavala JL et al (2016) Atlantic Ocean modulated hydroclimate of the subtropical northeastern Mexico since the Last Glacial Maximum and comparison with the sou-thern US. Earth Planet Sci Lett 434:141–150CrossRefGoogle Scholar
  85. Roy PD, Torrescano-Valle N, Islebe GA et al (2017) Late Holocene hydroclimate of the western Yucatan Peninsula (Mexico). J Quat Sci 32(8):1112–1120CrossRefGoogle Scholar
  86. Roy PD, Torrescano-Valle N, Escarraga-Paredes D et al (2018) Comparision of elemental concentration in near-surface late Holocene sediments and precipitation regimes of the Yucatán Peninsula (Mexico): a preliminary study. Bol Geol Min 129:693–706Google Scholar
  87. Rull V (2010) Ecology and Palaecology: two approaches, one objetive. Open Ecol J 3:1–5CrossRefGoogle Scholar
  88. Scarborough VL and Valdez F (2014) The alternative economy: resilience in the face of complexity from the Eastern Lowlands. Archeological Papers of the American Anthropological Association 24:124–141CrossRefGoogle Scholar
  89. Shaw JM (2003) Climate change and deforestation: implications for the Maya collapse. Anc Mesoam 14:157–167CrossRefGoogle Scholar
  90. Siemens AH (1983) Wetland agriculture in pre-hispanic Mesoamerica. Am Geogr Soc 73(2):166–181. Scholar
  91. Siemens AH (2011) Subidas y Bajadas: Desafíos en la investigación del factor agua en la ecología humana del mundo Maya. Paper read at the XXI Encuentro Internacional: Los Investigadores de la Cultura Maya. Universidad Autonoma de Campeche, Campeche, MéxicoGoogle Scholar
  92. Simpson GL (2012) Analogue methods in palaeolimnology. Chapter 15. In Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Springer p 496Google Scholar
  93. Sluyter A, Dominguez G (2006) Early maize (Zea mays L.) cultivation in Mexico: dating sedimentary pollen records and its implications. PNAS 103(4):1147–1151PubMedCrossRefGoogle Scholar
  94. Sosa-Nájera S, Lozano-García S, Roy PD et al (2010) Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Bol Soc Geol Mex 62(3):437–451Google Scholar
  95. Stott PA, Christidis N, Otto FEL et al (2016) Attribution of extreme wather and climate-related events. Clim Chang 7:23–41Google Scholar
  96. Torrescano-Valle N, Islebe GA (2015) Holocene paleoecology, climate history and human influence in the southwestern Yucatán peninsula. Rev Palaeobot Palynol 217:1–8CrossRefGoogle Scholar
  97. Turney CSM, Brown H (2007) Catastrophic early Holocene Sea level rise, human migration and Neolithic transition in Europe. Quat Sci Rev 26:2036–2041CrossRefGoogle Scholar
  98. Vela-Pelaez AA, Torrescano-Valle N, Islebe GA et al (2018) Holocene precipitation changes in the Maya forest, Yucatán península, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 505:42–52CrossRefGoogle Scholar
  99. Wahl D, Byrne R, Schreiner T et al (2006) Holocene vegetation change in the northern Peten and its implications for Maya prehistory. Quat Res 65(3):380–389CrossRefGoogle Scholar
  100. Wahl D, Byrne R, Schreiner T et al (2007) Palaeolimnological evidence of late-Holocene settlement and abandonment in the Mirador Basin, Peten, Guatemala. The Holocene 17(6):813–820CrossRefGoogle Scholar
  101. Wahl D, Estrada-Belli F, Anderson L (2013) A 3400 year paleolimnological record of prehispanic human-environment interations in the Holmul región of the southern Maya lowlands. Palaeogeogr Palaeoclimatol Palaeoecol 379-380:17–31CrossRefGoogle Scholar
  102. Wahl D, Byrne R, Anderson L (2014) An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat Sci Rev 103:19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur Unidad ChetumalChetumalMexico
  2. 2.División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/ I.T. Zona MayaOthon P. BlancoMexico
  3. 3.Centro de Investigaciones Históricas y Sociales, Universidad Autónoma de CampecheCampecheMexico

Personalised recommendations