Numerical Simulation on DC Breakdown of Polyimide Based on Charge Transport and Molecular Chain Displacement
Abstract
A DC breakdown model combining charge transport and molecular chain displacement is utilized to simulate the thickness-dependent DC electrical breakdown of polyimide and reveal the physical mechanism of DC breakdown. The free volume existing in dielectric materials provide electrons with free path to be accelerated and gain energy under the electric field. Molecular chains with occupied deep traps can be displaced by Coulomb force under electric field, furthermore, the displacement will enlarge the local free volume. The energy of electron w is determined by the local electric field F and the length of free volume λL, which can be expressed as w = eFλL. When the maximum energy of electrons exceed the deep trap energy level, the local current and temperature will rise in a surge, triggering breakdown eventually. The simulation results reveal the dynamics of space charge and electric field inside polyimide material before the DC electrical breakdown occurs. The breakdown strength Fb of polyimide films obtained from the DC breakdown model decrease with an increase in sample thickness d, which satisfies an inverse power law Fb = kd−n with n = 0.30. A strong dependence can be found between breakdown field and sample thickness when the influence from molecular chain displacement on free volume is taken into consideration. The simulation results indicate that the DC electrical breakdown may be the result of the interaction of space charge accumulation effect and molecular chain displacement.
Keywords
DC breakdown model Polyimide Molecular chain displacement Free volume ThicknessNotes
Acknowledgments
This work was supported by State Key Laboratory of Advanced Power Transmission Technology (Grant No. GEIRI-SKL-2018-010), the National Basic Research Program of China (grant No. 2015CB251003), and the National Natural Science Foundation of China (grant No. 51507124).
References
- 1.Cooper, R., Rowson, C.H., Watson, D.B.: Intrinsic electric strength of polythene. Nature 197(4868), 663–664 (1963)CrossRefGoogle Scholar
- 2.Diaham, S., Zelmat, S., Locatelli, M.L.: Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE TDEI 17(1), 18–27 (2010)Google Scholar
- 3.Kim, H.K., Shi, F.G.: Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE TDEI 8(2), 248–252 (2001)Google Scholar
- 4.Laurent, C., Teyssedre, G., Le Roy, S., Baudoin, F.: Charge dynamics and its energetic features in polymeric materials. IEEE TDEI 20(2), 357–381 (2013)Google Scholar
- 5.Matsui, K., Tanaka, Y., Takada, T., Fukao, T., Alison, J.M.: Space charge behavior in low density polyethylene at pre-breakdown. IEEE TDEI 12(3), 406–415 (2005)Google Scholar
- 6.Zha, J.W., Dang, Z.M., Song, H.T., Yin, Y., Chen, G.: Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films. J. Appl. Phys. 108, 094113 (2010)CrossRefGoogle Scholar
- 7.Chen, G., Zhao, J., Li, S., Zhong, L.: Origin of thickness dependent dc electrical breakdown in dielectrics. Appl. Phys. Lett. 100, 222904 (2012)CrossRefGoogle Scholar
- 8.Fox, T.G., Flory, P.J.: The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci. 14(75), 315–319 (1954)CrossRefGoogle Scholar
- 9.Fox, Jr., T.G., Flory, P.J.: Further studies on the melt viscosity of polyisobutylene. J. Phys. Chem. B. 55(2), 221–234 (1951)Google Scholar
- 10.Artbauer, J.: Electric strength of polymers. J. Phys. D. 29(2), 446–456 (1996)CrossRefGoogle Scholar
- 11.Min, D., Li, S., Ohki, Y.: Numerical simulation on molecular displacement and DC breakdown of LDPE. IEEE TDEI 23(1), 507–516 (2016)Google Scholar
- 12.Dang, Z.M., Zhou, T., Yao, S.H., Yuan, J.K., Zha, J.W., Song, H.T.: Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(21), 2077–2082 (2010)Google Scholar
- 13.Li, S., Min, D., Wang, W., Chen, G.: Modelling of dielectric breakdown through charge dynamics for polymer nanocomposites. IEEE TDEI 23(6), 3476–3485 (2017)Google Scholar
- 14.Li, S., Zhu, Y., Min, D., Chen, G.: Space charge modulated electrical breakdown. Sci. Rep. 6, 32588 (2016)CrossRefGoogle Scholar
- 15.Hoang, A.T., Pallon, L., Liu, D., Serdyuk, Y.V., Gubanski, S.M., Gedde, U.W.: Charge transport in LDPE nanocomposites Part I—experimental approach. Polymers 8, 87 (2016)CrossRefGoogle Scholar
- 16.Le Roy, S., Segur, P., Teyssedre, G., Laurent, C.: Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction. J. Phys. D. 37(2), 298–305 (2004)CrossRefGoogle Scholar
- 17.Kuik, M., Koster, L.J.A., Wetzelaer, G.A.H., Blom, P.W.M.: Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 25 (2011)CrossRefGoogle Scholar
- 18.Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. Lett. 87(5), 835–842 (1952)zbMATHGoogle Scholar
- 19.Kuik, M., Koster, L.J.A., Dijkstra, A.G., Wetzelaer, G.A.H., Blom, P.W.M.: Non-radiative recombination losses in polymer light-emitting diodes. Org. Electron. 13(6), 969–974 (2012)CrossRefGoogle Scholar
- 20.Lowell, J.: Absorption and conduction currents in polymers: a unified model. J. Phys. D. 23(2), 205–210 (1990)CrossRefGoogle Scholar