Advertisement

Charge Traps Depended Space Charge Dynamics and Electrical Breakdown Characteristics of Polymer Insulating Materials

  • Yuanwei Zhu
  • Peng Wei
  • Zichao Shen
  • Huize Cui
  • Yu Jing
  • Dongfan Li
  • Zihao Wang
  • Dongri Xie
  • Guanghao LuEmail author
  • Shengtao LiEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 598)

Abstract

Electrical breakdown of insulating materials unavoidably occurs in power equipment, which endangers the safe operation of power systems. Recent investigations suggest both shallow and deep traps contribute to improved breakdown performance of insulating materials. This contradiction implies that no uniform conclusion is formed at present stage, and thus suggesting the influence of charge trap on electrical breakdown and its related space charge dynamics are still to be further investigated. Here in this paper, electrical breakdown experiments were firstly conducted on three typical polymer insulating materials (low density polyethylene, polypropylene and polyimide). Then, charge trap depth and trap density of the three polymers were characterized by isothermal surface potential decay experiments, and the obtained information of charge traps were linked to breakdown results. After that, space charge dynamics in electrical breakdown processes of low density polyethylene with variations of charge trap depth were systemically simulated based on an improved bipolar charge transport model. It is found that the electrical breakdown strength of insulating materials are strongly related to trap depth of space charges, as deep charge traps corresponds to enhanced electrical breakdown strengths. The profile of homo space charges under DC stress is controlled by charge trap depth, and space charge induced electric field distortion dominates the DC breakdown performance of insulating materials. A turning point of DC breakdown strength is found around 0.58 eV of trap depth, as both shallower traps and deeper traps lead to increased electrical breakdown strengths.

Keywords

Breakdown Space charge Trap depth Polymer 

Notes

Acknowledgments

The authors thank the financial support of China Postdoctoral Science Foundation (Grant No. 2018M643648), the State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE 19308), the Fundamental Research Funds for the Central Universities, and the National Science Foundation of China (NSFC) under projects with Nos. 51473132 and 21574103.

References

  1. 1.
    Li, S., Zhu, Y., Min, D., Chen, G.: Space charge modulated electrical breakdown. Sci. Rep. 6, 32588 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhu, Y., Li, S., Min, D., Li, S., Cui, H., Chen, G.: Space charge modulated electrical breakdown of oil impregnated paper subjected to AC-DC combined voltages. Energies 11, 1547 (2018)CrossRefGoogle Scholar
  3. 3.
    Chen, G., Zhao, J., Li, S., Zhong, L.: Origin of thickness dependent DC electrical breakdown in dielectrics. Appl. Phys. Lett. 100, 222904 (2012)CrossRefGoogle Scholar
  4. 4.
    Chen, G., Fu, M., Liu, X., Zhong, L.: AC aging and space-charge characteristics in low-density polyethylene polymeric insulation. J. Appl. Phys. 97, 083713 (2005)CrossRefGoogle Scholar
  5. 5.
    Li, S., Min, D., Wang, W., Chen, G.: Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 5(23), 2777–2785 (2015)Google Scholar
  6. 6.
    Zheng, F., Dong, J., Zhang, Y., An, Z., Lei, Q.: Reduction of space charge breakdown in e-beam irradiated nano/polymethyl methacrylate composites. Appl. Phys. Lett. 97, 012901-1 (2013)Google Scholar
  7. 7.
    Zhu, Y., Li, S., Min, D.: Origin of dielectric processes in aged oil impregnated paper. IEEE Trans. Dielectr. Electr. Insul. 24, 1625–1635 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yuanwei Zhu
    • 1
    • 2
  • Peng Wei
    • 1
    • 2
  • Zichao Shen
    • 1
    • 2
  • Huize Cui
    • 2
  • Yu Jing
    • 3
  • Dongfan Li
    • 1
    • 2
  • Zihao Wang
    • 1
  • Dongri Xie
    • 2
  • Guanghao Lu
    • 1
    • 2
    Email author
  • Shengtao Li
    • 2
    Email author
  1. 1.Frontier Institute of Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’anChina
  3. 3.States Grid Shaanxi Economic Research InstituteXi’anChina

Personalised recommendations