Nanovaccines pp 233-265 | Cite as

Liposome-Based Nanovaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega


Liposomes are nanosized lipid particles that have become attractive vaccine delivery vehicles given their properties that include versatility for functionalization, controlled charge, high encapsulation capacity, high surface, and efficient cellular uptake. This chapter contains a description of the liposomes preparation techniques and their application to develop mucosal nanovaccines. The analysis of the current literature reveals that there are many attractive vaccine candidates based on this technology, although the majority have been evaluated in parenteral schemes. The mucosal formulations tested thus far are against parasitic, bacterial, and viral diseases. A cancer vaccine was also developed. The formulations have been assessed in test animals and administered intranasally, orally, sublingually, and by the airways. Immunogenicity assessment in preclinical studies supports the use of liposomes to enhance cellular and humoral responses. Therefore, liposomes are effective nanoparticles and the outstanding findings from the preclinical evaluation of many mucosal vaccine candidates indicate that there is a good prospect for the initiation of clinical trials in the coming years. The challenges for this field comprise expanding the assessment of mucosal formulations, achieving high stability in the formulation, and scale-up production.


Cross-presentation Thin film hydration Unilamellar vesicles Multilamellar vesicles 


  1. Abhyankar MM, Orr MT, Lin S, Suraju MO, Simpson A, Blust M, Pham T, Guderian JA, Tomai MA, Elvecrog J, Pedersen K, Petri WA Jr, Fox CB (2018) Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 3:22CrossRefGoogle Scholar
  2. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102CrossRefGoogle Scholar
  3. Alipour Talesh G, Ebrahimi Z, Badiee A, Mansourian M, Attar H, Arabi L, Jalali SA, Jaafari MR (2016) Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 176:57–64CrossRefGoogle Scholar
  4. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48CrossRefGoogle Scholar
  5. Arab A, Behravan J, Razazan A, Gholizadeh Z, Nikpoor AR, Barati N, Mosaffa F, Badiee A, Jaafari MR (2018) A nano-liposome vaccine carrying E75, a HER-2/neu-derived peptide, exhibits significant antitumour activity in mice. J Drug Target 26(4):365–372CrossRefGoogle Scholar
  6. Bale S, Goebrecht G, Stano A, Wilson R, Ota T, Tran K, Ingale J, Zwick MB, Wyatt RT (2017) Covalent linkage of HIV-1 trimers to synthetic liposomes elicits improved B cell and antibody responses. J Virol 91(16):e00443CrossRefGoogle Scholar
  7. Barati N, Nikpoor AR, Razazan A, Mosaffa F, Badiee A, Arab A, Gholizadeh Z, Behravan J, Jaafari MR (2017) Nanoliposomes carrying HER2/neu-derived peptide AE36 with CpG-ODN exhibit therapeutic and prophylactic activities in a mice TUBO model of breast cancer. Immunol Lett 190:108–117CrossRefGoogle Scholar
  8. Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C, Seeberger PH (2018) Synthesis, liposomal formulation, and immunological evaluation of a minimalistic carbohydrate-α-GalCer vaccine candidate. J Med Chem 61(11):4918–4927CrossRefGoogle Scholar
  9. Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):E12CrossRefGoogle Scholar
  10. Carneiro C, Correia A, Lima T, Vilanova M, Pais C, Gomes AC, Real Oliveira MECD, Sampaio P (2016) Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomater 39:133–145CrossRefGoogle Scholar
  11. Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20(1-2):208–217CrossRefGoogle Scholar
  12. de Araújo Lopes SC, dos Santos Giuberti C, Rocha TGR, dos Santos Ferreira D, Leite EA, Oliveira MC (2013) Liposomes as carriers of anticancer drugs. In: Cancer treatment-conventional and innovative approaches. IntechOpen, LondonGoogle Scholar
  13. Del Giudice G, Rappuoli R, Didierlaurent AM (2018) Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol 39:14–21CrossRefGoogle Scholar
  14. Fan Y, Sahdev P, Ochyl LJ, Akerberg J, Moon JJ (2015) Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release 208:121–129CrossRefGoogle Scholar
  15. Fotoran WL, Santangelo RM, Medeiros MM, Colhone M, Ciancaglini P, Barboza R, Marinho CR, Stábeli RG, Wunderlich G (2015) Liposomes loaded with P. falciparum merozoite-derived proteins are highly immunogenic and produce invasion-inhibiting and anti-toxin antibodies. J Control Release 217:121–127CrossRefGoogle Scholar
  16. Gammon JM, Jewell CM (2019) Engineering immune tolerance with biomaterials. Adv Healthc Mater 8(4):e1801419CrossRefGoogle Scholar
  17. Gargett T, Abbas MN, Rolan P, Price JD, Gosling KM, Ferrante A, Ruszkiewicz A, Atmosukarto IIC, Altin J, Parish CR, Brown MP (2018) Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother 67(9):1461–1472CrossRefGoogle Scholar
  18. Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater 41:161–168CrossRefGoogle Scholar
  19. Gharib R, Greige-Gerges H, Jraij A, Auezova L, Charcosset C (2016) Preparation of drug-in-cyclodextrin-in-liposomes at a large scale using a membrane contactor: application to trans-anethole. Carbohydr Polym 154:276–286CrossRefGoogle Scholar
  20. Glueck R (2001) Review of intranasal influenza vaccine. Adv Drug Deliv Rev 51(1-3):203–211CrossRefGoogle Scholar
  21. Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, Kim M, Reinherz EL, Irvine DJ (2015) Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 33(7):861–868CrossRefGoogle Scholar
  22. Harde H, Agrawal AK, Jain S (2015a) Trilateral ‘3P’ mechanics of stabilized layersomes technology for efficient oral immunization. J Biomed Nanotechnol 11(3):363–381CrossRefGoogle Scholar
  23. Harde H, Agrawal AK, Jain S (2015b) Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration. Drug Deliv Transl Res 5(5):498–510CrossRefGoogle Scholar
  24. Harde H, Siddhapura K, Agrawal AK, Jain S (2015c) Development of dual toxoid-loaded layersomes for complete immunostimulatory response following peroral administration. Nanomedicine 10(7):1077–1091CrossRefGoogle Scholar
  25. Horiuchi Y, Takagi A, Uchida T, Akatsuka T (2015) Targeting cryptic epitope with modified antigen coupled to the surface of liposomes induces strong antitumor CD8 T-cell immune responses in vivo. Oncol Rep 34(6):2827–2836CrossRefGoogle Scholar
  26. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297CrossRefGoogle Scholar
  27. Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS (2019) M cell targeting engineered biomaterials for effective vaccination. Biomaterials 192:75–94CrossRefGoogle Scholar
  28. Iwama T, Uchida T, Sawada Y, Tsuchiya N, Sugai S, Fujinami N, Shimomura M, Yoshikawa T, Zhang R, Uemura Y, Nakatsura T (2016) Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem Biophys Res Commun 469(1):138–143CrossRefGoogle Scholar
  29. Kakhi Z, Frisch B, Bourel-Bonnet L, Hemmerlé J, Pons F, Heurtault B (2015) Airway administration of a highly versatile peptide-based liposomal construct for local and distant antitumoral vaccination. Int J Pharm 496(2):1047–1056CrossRefGoogle Scholar
  30. Kakhi Z, Frisch B, Heurtault B, Pons F (2016) Liposomal constructs for antitumoral vaccination by the nasal route. Biochimie 130:14–22CrossRefGoogle Scholar
  31. Kaneko K, McDowell A, Ishii Y, Hook S (2017) Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res 5:1–9Google Scholar
  32. Knotigová PT, Zyka D, Mašek J, Kovalová A, Křupka M, Bartheldyová E, Kulich P, Koudelka Š, Lukáč R, Kauerová Z, Vacek A, Horynová MS, Kozubík A, Miller AD, Fekete L, Kratochvílová I, Ježek J, Ledvina M, Raška M, Turánek J (2015) Molecular adjuvants based on nonpyrogenic lipophilic derivatives of norAbuMDP/GMDP formulated in nanoliposomes: stimulation of innate and adaptive immunity. Pharm Res 32(4):1186–1199CrossRefGoogle Scholar
  33. Larrouy-Maumus G, Layre E, Clark S, Prandi J, Rayner E, Lepore M, de Libero G, Williams A, Puzo G, Gilleron M (2017) Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine 35(10):1395–1402CrossRefGoogle Scholar
  34. Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 12(8):592–605CrossRefGoogle Scholar
  35. Lycke NY, Bemark M (2017) The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 10(6):1361–1374CrossRefGoogle Scholar
  36. Lyon PC, Gray MD, Mannaris C, Folkes LK, Stratford M, Campo L, Chung DYF, Scott S, Anderson M, Goldin R, Carlisle R, Wu F, Middleton MR, Gleeson FV, Coussios CC (2018) Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol 19(8):1027–1039CrossRefGoogle Scholar
  37. Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus. Nanomedicine 11(10):1223–1236CrossRefGoogle Scholar
  38. Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR (2019) Mucosal vaccines and technology. Clin Exp Immunol 196(2):205–214Google Scholar
  39. Naseri H, Eskandari F, Jaafari MR, Khamesipour A, Abbasi A, Badiee A (2017) PEGylation of cationic liposomes encapsulating soluble Leishmania antigens reduces the adjuvant efficacy of liposomes in murine model. Parasite Immunol 39(11):12492CrossRefGoogle Scholar
  40. Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S (2015) Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine 33(43):5838–5844CrossRefGoogle Scholar
  41. Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M (2018) The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol 9:155CrossRefGoogle Scholar
  42. Oberoi HS, Yorgensen YM, Morasse A, Evans JT, Burkhart DJ (2016) PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. J Control Release 223:64–74CrossRefGoogle Scholar
  43. Pati R, Shevtsov M, Sonawane A (2018) Nanoparticle vaccines against infectious diseases. Front Immunol 9:2224CrossRefGoogle Scholar
  44. Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z, Hatamipour M, Reza Nikpoor A, Momtazi-Borojeni AA, Mosaffa F, Ghahremani MH, Jaafari MR (2017) Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One 12(10):e0185099CrossRefGoogle Scholar
  45. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447(1-2):75–93CrossRefGoogle Scholar
  46. Rico AB, Phillips AT, Schountz T, Jarvis DL, Tjalkens RB, Powers AM, Olson KE (2016) Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 499:30–39CrossRefGoogle Scholar
  47. Schubert R (2003) Liposome preparation by detergent removal. Methods Enzymol 367:46–70CrossRefGoogle Scholar
  48. Sebaaly C, Charcosset C, Stainmesse S, Fessi H, Greige-Gerges H (2016) Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: from laboratory to large scale using a membrane contactor. Carbohydr Polym 138:75–85CrossRefGoogle Scholar
  49. Shen KY, Liu HY, Li HJ, Wu CC, Liou GG, Chang YC, Leng CH, Liu SJ (2016) A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. J Control Release 233:57–63CrossRefGoogle Scholar
  50. Sriwongsitanont S, Ueno M (2010) Effect of freeze-thawing process on the size and lamellarity of peg-lipid liposomes. Open Coll Sci J 4:1–6Google Scholar
  51. Tregoning JS, Russell RF, Kinnear E (2018) Adjuvanted influenza vaccines. Hum Vaccin Immunother 14(3):550–564CrossRefGoogle Scholar
  52. Umlauf BJ, Chung CY, Brown KC (2015) Modular three-component delivery system facilitates HLA class I antigen presentation and CD8(+) T-cell activation against tumors. Mol Ther 23(6):1092–1102CrossRefGoogle Scholar
  53. Verma AK, Sharma S, Gupta P, Singodia D, Kansal S, Sharma V, Mishra PR (2016) Vitamin B12 grafted layer-by-layer liposomes bearing HBsAg facilitate oral immunization: effect of modulated biomechanical properties. Mol Pharm 13(7):2531–2542CrossRefGoogle Scholar
  54. Wang N, Chen M, Wang T (2019) Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release 303:130–150CrossRefGoogle Scholar
  55. Yusuf H, Ali AA, Orr N, Tunney MM, McCarthy HO, Kett VL (2017) Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int J Pharm 533(1):179–186CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations