Nanovaccines pp 181-231 | Cite as

Chitosan-Based Mucosal Nanovaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega


The race for vaccine development has as priority the formulation of subunit vaccines capable of developing robust and safe immune responses, which will overcome the disadvantages of the vaccines formulated with whole pathogens, namely high reactogenicity and in some cases the risk to develop the disease to which the vaccine is supposed to protect against. Moreover, the development of efficacious vaccines against non-communicable diseases imposes the challenge of efficiently breaking the immune tolerance against self-antigens. Chitosan is an attractive polymer that has been employed to develop nanovaccines with promising findings in preclinical evaluations. In the present chapter, an overview of the nanovaccines based on chitosan nanoparticles targeting human and animal diseases is presented. Chitosan-based nanovaccines have shown promising efficacy in animal models of several diseases with many of them being highly immunogenic when administered by mucosal routes, which are the most attractive approach for massive and painless immunization. Clinical evaluation of some chitosan-based adjuvants adds potential to this field.


Antigen delivery nanoparticle Adjuvant Immunogenicity Ionotropic gelation Complex coacervation 


  1. Babu A, Ramesh R (2017) Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs 15(4):E96CrossRefGoogle Scholar
  2. Biswas S, Chattopadhyay M, Sen KK, Saha MK (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410CrossRefGoogle Scholar
  3. Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, De Braekeleer J, Jongert E, Borchard G (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 266(1-2):17–27CrossRefGoogle Scholar
  4. Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2007) Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci 32:278–290CrossRefGoogle Scholar
  5. Brune KD, Howarth M (2018) New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol 9:1432CrossRefGoogle Scholar
  6. Caetano LA, Almeida AJ, Gonçalves L (2016) Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs 14(5):90CrossRefGoogle Scholar
  7. Chew JL, Wolfowicz CB, Mao HQ, Leong KW, Chua KY (2003) Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine 21(21-22):2720–2729CrossRefGoogle Scholar
  8. Cordeiro AS, Crecente-Campo J, López-Bouzo B, González SF, de la Fuente M, Alonso MJ (2019) Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. J Drug Target 2:1–52Google Scholar
  9. Démoulins T, Englezou PC, Milona P, Ruggli N, Tirelli N, Pichon C, Sapet C, Ebensen T, Guzmán CA, McCullough KC (2017) Self-replicating RNA vaccine delivery to dendritic cells. Methods Mol Biol 1499:37–75CrossRefGoogle Scholar
  10. Denizli M, Aslan B, Mangala LS, Jiang D, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK (2017) Chitosan nanoparticles for miRNA delivery. Methods Mol Biol 1632:219–230CrossRefGoogle Scholar
  11. Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I, Munang’andu HM (2016) Edwardsiella tarda OmpA encapsulated in chitosan nanoparticles shows superior protection over inactivated whole cell vaccine in orally vaccinated fringed-lipped peninsula carp (Labeo fimbriatus). Vaccine 4(4):E40CrossRefGoogle Scholar
  12. Goldmann K, Ensminger SM, Spriewald BM (2012) Oral gene application using chitosan-DNA nanoparticles induces transferable tolerance. Clin Vaccine Immunol 19(11):1758–1764CrossRefGoogle Scholar
  13. Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine 9(16):2511–2529CrossRefGoogle Scholar
  14. Harde H, Agrawal AK, Jain S (2015a) Tetanus toxoids loaded glucomannosylated chitosan based nanohoming vaccine adjuvant with improved oral stability and immunostimulatory response. Pharm Res 32(1):122–134CrossRefGoogle Scholar
  15. Harde H, Siddhapura K, Agrawal AK, Jain S (2015b) Divalent toxoids loaded stable chitosan-glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration. Int J Pharm 487(1-2):292–304CrossRefGoogle Scholar
  16. Huang JL, Yin YX, Pan ZM, Zhang G, Zhu AP, Liu XF, Jiao XA (2010) Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn model. J Biomed Biotechnol 2010:589476Google Scholar
  17. Ilinskaya AN, Dobrovolskaia MA (2016) Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol 299:70–77CrossRefGoogle Scholar
  18. Jain S, Sharma RK, Vyas SP (2006) Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol 58(3):303–310CrossRefGoogle Scholar
  19. Karch CP, Burkhard P (2016) Vaccine technologies: from whole organisms to rationally designed protein assemblies. Biochem Pharmacol 120:1–14CrossRefGoogle Scholar
  20. Le Buanec H, Vetu C, Lachgar A, Benoit MA, Gillard J, Paturance S, Aucouturier J, Gane V, Zagury D, Bizzini B (2001) Induction in mice of anti-Tat mucosal immunity by the intranasal and oral routes. Biomed Pharmacother 55(6):316–320CrossRefGoogle Scholar
  21. Li GP, Liu ZG, Liao B, Zhong NS (2009) Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell Mol Immunol 6(1):45–50CrossRefGoogle Scholar
  22. Li L, Lin SL, Deng L, Liu ZG (2013) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36(12):987–995CrossRefGoogle Scholar
  23. Li L, Wei Y, Gong C (2015) Polymeric nanocarriers for non-viral gene delivery. J Biomed Nanotechnol 11(5):739–770CrossRefGoogle Scholar
  24. Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G (2018) Chitosan based nanomaterials for drug delivery. Molecules 23(10):2661CrossRefGoogle Scholar
  25. Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M, Chen X, Xiang R, Tan X (2013) Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 8(4):e60190CrossRefGoogle Scholar
  26. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int 2014:180549CrossRefGoogle Scholar
  27. Malik B, Goyal AK, Zakir F, Vyas SP (2011) Surface engineered nanoparticles for oral immunization. J Biomed Nanotechnol 7(1):132–134CrossRefGoogle Scholar
  28. Malik B, Goyal AK, Markandeywar TS, Rath G, Zakir F, Vyas SP (2012) Microfold-cell targeted surface engineered polymeric nanoparticles for oral immunization. J Drug Target 20(1):76–84CrossRefGoogle Scholar
  29. Malik A1, Gupta M1, Gupta V1, Gogoi H1, Bhatnagar R1 (2018) Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 13:7959–7970CrossRefGoogle Scholar
  30. Mangal S, Pawar D, Agrawal U, Jain AK, Vyas SP (2014) Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine. Artif Cells Nanomed Biotechnol 42(1):47–57CrossRefGoogle Scholar
  31. Mishra N, Khatri K, Gupta M, Vyas SP (2014) Development and characterization of LTA-appended chitosan nanoparticles for mucosal immunization against hepatitis B. Artif Cells Nanomed Biotechnol 42(4):245–255CrossRefGoogle Scholar
  32. Moran HBT, Turley JL, Andersson M, Lavelle EC (2018) Immunomodulatory properties of chitosan polymers. Biomaterials 184:1–9CrossRefGoogle Scholar
  33. Neimert-Andersson T, Hällgren AC, Andersson M, Langebäck J, Zettergren L, Nilsen-Nygaard J, Draget KI, van Hage M, Lindberg A, Gafvelin G, Grönlund H (2011) Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine 29(48):8965–8973CrossRefGoogle Scholar
  34. Neimert-Andersson T, Binnmyr J, Enoksson M, Langebäck J, Zettergren L, Hällgren AC, Franzén H, Lind Enoksson S, Lafolie P, Lindberg A, Al-Tawil N, Andersson M, Singer P, Grönlund H, Gafvelin G (2014) Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine 32(45):5967–5974CrossRefGoogle Scholar
  35. Peng X, Hu X, Salazar MA (2019) First case in China of vaccine-associated poliomyelitis after sequential Inactivated and bivalent oral polio vaccination. Vaccine 37(5):751–754CrossRefGoogle Scholar
  36. Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Anver Basha K, Sahul Hameed AS (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 26(3):429–437CrossRefGoogle Scholar
  37. Ramya VL, Sharma R, Gireesh-Babu P, Patchala SR, Rather A, Nandanpawar PC, Eswaran S (2014) Development of chitosan conjugated DNA vaccine against nodavirus in Macrobrachium rosenbergii (De Man, 1879). J Fish Dis 37(9):815–824CrossRefGoogle Scholar
  38. Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J, Mendoza H, Gonzalez-Nilo F, Sandino AM, Spencer E (2015) Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol 45(1):157–166CrossRefGoogle Scholar
  39. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387–391CrossRefGoogle Scholar
  40. Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z (2015) Development of enhanced antibody response toward dual delivery of nano-adjuvant adsorbed human Enterovirus-71 vaccine encapsulated carrier. Hum Vaccin Immunother 11(10):2414–2424CrossRefGoogle Scholar
  41. Shrestha B, Rath JP (2014) Poly(vinyl alcohol)-coated chitosan microparticles act as an effective oral vaccine delivery system for hepatitis B vaccine in rat model. IET Nanobiotechnol 8(4):201–207CrossRefGoogle Scholar
  42. Tajdini F, Amini MA, Mokarram AR, Taghizadeh M, Azimi SM (2014) Foot and mouth disease virus-loaded fungal chitosan nanoparticles for intranasal administration: impact of formulation on physicochemical and immunological characteristics. Pharm Dev Technol 19(3):333–341CrossRefGoogle Scholar
  43. Valero Y, Awad E, Buonocore F, Arizcun M, Esteban MÁ, Meseguer J, Chaves-Pozo E, Cuesta A (2016) An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev Comp Immunol 65:64–72CrossRefGoogle Scholar
  44. Wang X, Zhang X, Kang Y, Jin H, Du X, Zhao G, Yu Y, Li J, Su B, Huang C, Wang B (2008) Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine 26(40):5135–5144CrossRefGoogle Scholar
  45. Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Jiang S (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One 6(11):e27605CrossRefGoogle Scholar
  46. Yan J, Chen R, Zhang H, Bryers JD (2018) Injectable biodegradable chitosan-alginate 3D porous gel scaffold for mRNA vaccine delivery. Macromol Biosci 19:e1800242CrossRefGoogle Scholar
  47. Ye T, Yue Y, Fan X, Dong C, Xu W, Xiong S (2014) M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 32(35):4457–4465CrossRefGoogle Scholar
  48. Zhang H, Cheng C, Zheng M, Chen JL, Meng MJ, Zhao ZZ, Chen Q, Xie Z, Li JL, Yang Y, Shen Y, Wang HN, Wang ZZ, Gao R (2007) Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6. Vaccine 25(41):7094–7101CrossRefGoogle Scholar
  49. Zhao K, Shi X, Zhao Y, Wei H, Sun Q, Huang T, Zhang X, Wang Y (2011) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29(47):8549–8556CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations