Advertisement

Nanovaccines pp 159-179 | Cite as

Carbon Nanotubes-Based Mucosal Vaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega
Chapter

Abstract

The use of nanomaterials is acquiring great potential in vaccinology since they can render effective vaccines due to their singular properties; nanomaterials can serve as carriers that efficiently deliver the antigen to antigen presenting cells and favor the critical steps on the elicitation of adaptive immune responses. In this chapter, the implications of carbon nanotubes (CNTs) in the vaccinology field are analyzed. Thus far, nanotubes-based mucosal vaccines have been designed mainly to fight diseases in fish looking to reduce production losses in aquaculture. Surprisingly, the use of nanotubes to develop mucosal vaccines for mammalians remains essentially unexplored, with only some studies dealing with their use as immunostimulants in the lungs to enhance immunity against cancer and influenza. One concern on this topic is the toxicity reported for CNTs in several studies, although still under debate. Thus, an important gap exists in this regard since there is a lack of detailed toxicity studies under exposure schemes resembling vaccination dosage. Overall, the functionalized forms of CNTs have shown reduced toxicity and exerted effects in immune cells. The critical avenues to expand the development of CNTs-based vaccines are discussed and although this application is at a very early stage of investigation; CNTs are considered an important piece in the portfolio of nanomaterials for vaccine development.

Keywords

Toxicity Carboxylation Amination Lung cancer Aeromonas spp. Single wall carbon nanotubes Multi-walled carbon nanotubes Inflammatory response 

References

  1. Alidori S, Thorek DLJ, Beattie BJ, Ulmert D, Almeida BA, Monette S, Scheinberg DA, McDevitt MR (2017) Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 12(8):e0183902CrossRefGoogle Scholar
  2. Alter G, Barouch D (2018) Immune correlate-guided HIV vaccine design. Cell Host Microbe 24(1):25–33CrossRefGoogle Scholar
  3. Bai W, Raghavendra A, Podila R, Brown JM (2016) Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation. Int J Nanomedicine 11:4357–4371CrossRefGoogle Scholar
  4. Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett 2(12):1413–1417CrossRefGoogle Scholar
  5. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126CrossRefGoogle Scholar
  6. Brudeseth BE, Wiulsrød R, Fredriksen BN, Lindmo K, Løkling KE, Bordevik M, Steine N, Klevan A, Gravningen K (2013) Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol 35(6):1759–1768CrossRefGoogle Scholar
  7. Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH Jr, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T (2017) Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza A virus titers in mice. Virol J 14(1):242CrossRefGoogle Scholar
  8. Cho Y, Shin N, Kim D, Park JY, Hong S (2017) Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control. Biosci Rep 37(2):BSR20160330CrossRefGoogle Scholar
  9. Christophersen DV, Jacobsen NR, Andersen MH, Connell SP, Barfod KK, Thomsen MB, Miller MR, Duffin R, Lykkesfeldt J, Vogel U, Wallin H, Loft S, Roursgaard M, Møller P (2016) Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology 371:29–40CrossRefGoogle Scholar
  10. Cunha-Matos CA, Millington OR, Wark AW, Zagnoni M (2016) Real-time assessment of nanoparticle-mediated antigen delivery and cell response. Lab Chip 16(17):3374–3381CrossRefGoogle Scholar
  11. de Faria PC, dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT (2014) Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer. Nano Lett 14(9):5458–5470CrossRefGoogle Scholar
  12. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528CrossRefGoogle Scholar
  13. Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201CrossRefGoogle Scholar
  14. Fadel TR, Steenblock ER, Stern E, Li N, Wang X, Haller GL, Pfefferle LD, Fahmy TM (2008) Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett 8:2070–2076CrossRefGoogle Scholar
  15. Francis AP, Devasena T (2018) Toxicity of carbon nanotubes: a review. Toxicol Ind Health 34(3):200–210CrossRefGoogle Scholar
  16. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun (Camb) 24:3050–3051CrossRefGoogle Scholar
  17. Gerencsér G, Varjas T, Szendi K, Varga C (2016) In vivo induction of primary DNA lesions upon subchronic oral exposure to multi-walled carbon nanotubes. In Vivo 30(6):863–867CrossRefGoogle Scholar
  18. Geyik C, Evran S, Timur S, Telefoncu A (2014) The covalent bioconjugate of multiwalled carbon nanotube and amino-modified linearized plasmid DNA for gene delivery. Biotechnol Prog 30(1):224–232CrossRefGoogle Scholar
  19. Gong YX, Zhu B, Liu GL, Liu L, Ling F, Wang GX, Xu XG (2015) Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila. Fish Shellfish Immunol 42(1):213–220CrossRefGoogle Scholar
  20. Guo Z, Lin Y, Wang X, Fu Y, Lin W, Lin X (2018) The protective efficacy of four iron-related recombinant proteins and their single-walled carbon nanotube encapsulated counterparts against Aeromonas hydrophila infection in zebrafish. Fish Shellfish Immunol 82:50–59CrossRefGoogle Scholar
  21. Hassan HA, Smyth L, Wang JT, Costa PM, Ratnasothy K, Diebold SS, Lombardi G, Al-Jamal KT (2016) Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104:310–322CrossRefGoogle Scholar
  22. Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT (2019) Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J Control Release 297:79–90CrossRefGoogle Scholar
  23. Ivani S, Karimi I, Tabatabaei SR, Syedmoradi L (2016) Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice. Toxicol Ind Health 32(7):1293–1301CrossRefGoogle Scholar
  24. Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, Jain NK (2009) Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 5(4):432–442CrossRefGoogle Scholar
  25. Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39CrossRefGoogle Scholar
  26. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK (2015) Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine 10:4267–4277Google Scholar
  27. Kang SH, Hong SJ, Lee YK, Cho S (2018) Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers 10(9):E948CrossRefGoogle Scholar
  28. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM (2012) A carbon nanotube toxicity paradigm driven by mast cells and the IL-33ST2 axis. Small 8:2904–2912CrossRefGoogle Scholar
  29. Konduru NV, Tyurina YY, Feng W, Basova LV, Belikova NA, Bayir H, Clark K, Rubin M, Stolz D, Vallhov H, Scheynius A, Witasp E, Fadeel B, Kichambare PD, Star A, Kisin ER, Murray AR, Shvedova AA, Kagan VE (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4:e4398CrossRefGoogle Scholar
  30. Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D (2016) Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 7(1):188CrossRefGoogle Scholar
  31. Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, Pichika MR, Kumar Tekade R (2018) Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. Nanoscale 10(19):8911–8937CrossRefGoogle Scholar
  32. Lee M, Baik KY, Noah M, Kwon YK, Lee JO, Hong S (2009) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 9:2267–2280CrossRefGoogle Scholar
  33. Li R, Wu RA, Zhao L, Wu M, Yang L, Zou H (2010) P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408CrossRefGoogle Scholar
  34. Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44:4782–4785CrossRefGoogle Scholar
  35. Liu L, Gong YX, Zhu B, Liu GL, Wang GX, Ling F (2015) Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. Fish Shellfish Immunol 45(1):175–183CrossRefGoogle Scholar
  36. Lopalco PL (2017) Wild and vaccine-derived poliovirus circulation, and implications for polio eradication. Epidemiol Infect 145(3):413–419CrossRefGoogle Scholar
  37. Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, Tekade RK (2018) Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm 548(1):540–558CrossRefGoogle Scholar
  38. Méndez-Samperio P (2019) Current challenges and opportunities for Bacillus Calmette-Guérin-replacement vaccine candidates. Scand J Immunol 4:e12772Google Scholar
  39. Meunier E, Coste A, Olagnier D, Authier H, Lefèvre L, Dardenne C, Bernad J, Béraud M, Flahaut E, Pipy B (2012) Double-walled carbon nanotubes trigger IL-1 b release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 8:987–995CrossRefGoogle Scholar
  40. Mishra V, Kesharwani P, Jain NK (2018) Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit Rev Ther Drug Carrier Syst 35(4):293–330CrossRefGoogle Scholar
  41. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRefGoogle Scholar
  42. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRefGoogle Scholar
  43. Otsuka K, Yamada K, Taquahashi Y, Arakaki R, Ushio A, Saito M, Yamada A, Tsunematsu T, Kudo Y, Kanno J, Ishimaru N (2018) Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes. PLoS One 13(10):e0205702CrossRefGoogle Scholar
  44. Palomaki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870CrossRefGoogle Scholar
  45. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43(39):5242–5246CrossRefGoogle Scholar
  46. Pardo J, Peng Z, Leblanc RM (2018) Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23(2):E378CrossRefGoogle Scholar
  47. Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y (2016) Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 10(8):1188–1202CrossRefGoogle Scholar
  48. Petrov P, Stassin F, Pagnoulle C, Jérôme R (2003) Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun 17:2094–2095Google Scholar
  49. Pondman KM, Tsolaki AG, Paudyal B, Shamji MH, Switzer A, Pathan AA, Abozaid SM, Ten Haken B, Stenbeck G, Sim RB, Kishore U (2016) Complement deposition on nanoparticles can modulate immune responses by macrophage, B and T cells. J Biomed Nanotechnol 12(1):197–216CrossRefGoogle Scholar
  50. Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, Midgley PA, Welland M (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492CrossRefGoogle Scholar
  51. Schuetz AN (2019) Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Semin Diagn Pathol 36:187CrossRefGoogle Scholar
  52. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725CrossRefGoogle Scholar
  53. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104CrossRefGoogle Scholar
  54. Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1, 3-dipolar cycloadditions. J Mater Chem 14(4):437–439CrossRefGoogle Scholar
  55. Tallapaka SB, Karuturi BVK, Yeapuri P, Curran SM, Sonawane YA, Phillips JA, David Smith D, Sanderson SD, Vetro JA (2019) Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection. Int J Pharm 565:242CrossRefGoogle Scholar
  56. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  57. Versiani AF, Astigarraga RG, Rocha ES, Barboza AP, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG (2017) Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnol 15(1):26CrossRefGoogle Scholar
  58. Wang Y, Liu GL, Li DL, Ling F, Zhu B, Wang GX (2015) The protective immunity against grass carp reovirus in grass carp induced by a DNA vaccination using single-walled carbon nanotubes as delivery vehicles. Fish Shellfish Immunol 47(2):732–742CrossRefGoogle Scholar
  59. Wilson JM, Laurent P (2002) Fish gill morphology: inside out. J Exp Zool 293:192–213CrossRefGoogle Scholar
  60. Wu L, Tang H, Zheng H, Liu X, Liu Y, Tao J, Liang Z, Xia Y, Xu Y, Guo Y, Chen H, Yang J (2019) Multiwalled carbon nanotubes prevent tumor metastasis through switching M2-polarized macrophages to M1 via TLR4 activation. J Biomed Nanotechnol 15(1):138–150CrossRefGoogle Scholar
  61. Xing J, Liu Z, Huang Y, Qin T, Bo R, Zheng S, Luo L, Huang Y, Niu Y, Wang D (2016) Lentinan-modified carbon nanotubes as an antigen delivery system modulate immune response in vitro and in vivo. ACS Appl Mater Interfaces 8(30):19276–19283CrossRefGoogle Scholar
  62. Zhang T, Tang M, Zhang S, Hu Y, Li H, Zhang T, Xue Y, Pu Y (2017a) Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine 12:1539–1554CrossRefGoogle Scholar
  63. Zhang C, Zhao Z, Zha JW, Wang GX, Zhu B (2017b) Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of a DNA vaccine against spring viremia of carp virus in common carp. Fish Shellfish Immunol 71:191–201CrossRefGoogle Scholar
  64. Zhang C, Zhao Z, Liu GY, Li J, Wang GX, Zhu B (2018) Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs-DNA vaccine encoding matrix protein. Fish Shellfish Immunol 79:256–264CrossRefGoogle Scholar
  65. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRefGoogle Scholar
  66. Zhu B, Liu GL, Gong YX, Ling F, Song LS, Wang GX (2014) Single-walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. Fish Shellfish Immunol 41(2):279–293CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations