Advertisement

Nanovaccines pp 131-157 | Cite as

Nanogels-Based Mucosal Vaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega
Chapter

Abstract

Innovative vaccines are required to fight human and animal diseases. Improved immunogenicity, safety, easy administration, and low cost are among the innovations that are pursued in this field. Nanogels are materials with attractive features to meet these requirements; they consist of solid, jelly like materials produced by crosslinking of synthetic or natural polymers (or a combination of both) with a high water-holding capacity. Herein, the state of the art of nanogels-based vaccines is provided. Synthesis and functionalization methods for nanogels are described. Thus far, several groups have evaluated nanogels as vaccine delivery vehicles leading to promising data for nanovaccines against cancer, obesity, and infectious diseases. The most advanced candidates are nanovaccines against cancer, based on cholesteryl pullulan nanogels, that have been evaluated in clinical trials revealing proper immunogenicity and safety. The key perspectives for this topic include expanding the assessment of mucosal vaccines and implementing green syntheses approaches, which could lead to lower production cost and enhanced safety.

Keywords

Cholesteryl pullulan nanogels Chemical crosslinking Physical crosslinking Radical polymerization 

References

  1. Akiyoshi K, Yamaguchi S, Sunamoto J (1991) Self-aggregates of hydrophobic polysaccharide derivatives. Chem Lett 20(7):1263–1266CrossRefGoogle Scholar
  2. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068CrossRefGoogle Scholar
  3. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149–8167CrossRefGoogle Scholar
  4. Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 19(4):882–890CrossRefGoogle Scholar
  5. Azegami T, Yuki Y, Sawada S, Mejima M, Ishige K, Akiyoshi K, Itoh H, Kiyono H (2017) Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol 10:1351–1360CrossRefGoogle Scholar
  6. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29CrossRefGoogle Scholar
  7. Chiu M, Bao C, Sadarangani M (2019) Dilemmas with rotavirus vaccine: the neonate and immunocompromised. Pediatr Infect Dis J 38.(6S Suppl 1:S43–S46CrossRefGoogle Scholar
  8. Feng JL, Qi JR, Yin SW, Wang JM, Guo J, Weng JY, Liu QR, Yang XQ (2015) Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point. J Agric Food Chem 63(26):6075–6083CrossRefGoogle Scholar
  9. Fukuyama Y, Yuki Y, Katakai Y, Harada N, Takahashi H, Takeda S, Mejima M, Joo S, Kurokawa S, Sawada S, Shibata H, Park EJ, Fujihashi K, Briles DE, Yasutomi Y, Tsukada H, Akiyoshi K, Kiyono H (2015) Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–1153CrossRefGoogle Scholar
  10. Gheibi-Hayat SM, Darroudi M (2019) Nanovaccine: a novel approach in immunization. J Cell Physiol 234(8):12530–12536CrossRefGoogle Scholar
  11. Gu XG, Schmitt M, Hiasa A, Nagata Y, Ikeda H, Sasaki Y, Akiyoshi K, Sunamoto J, Nakamura H, Kuribayashi K, Shiku H (1998) A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas. Cancer Res 58(15):3385–3390Google Scholar
  12. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429CrossRefGoogle Scholar
  13. Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H, Shiraishi T, Akiyoshi K, Scott AM, Murphy R, Hoffman EW, Old LJ, Katayama N, Shiku H (2008) Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99:601–607CrossRefGoogle Scholar
  14. Kendre PN, Satav TS (2019) Current trends and concepts in the design and development of nanogel carrier systems. Polym Bull 76(3):1595–1617CrossRefGoogle Scholar
  15. Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, Okumura S, Imai H, Shiraishi T, Masuya M, Nishikawa M, Sunamoto J, Akiyoshi K, Kanematsu T, Scott AM, Murphy R, Hoffman EW, Old LJ, Shiku H (2006) HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res 12:7397–7405CrossRefGoogle Scholar
  16. Kong IG, Sato A, Yuki Y, Nochi T, Takahashi H, Sawada S, Mejima M, Kurokawa S, Okada K, Sato S, Briles DE, Kunisawa J, Inoue Y, Yamamoto M, Akiyoshi K, Kiyono H (2013) Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–1634CrossRefGoogle Scholar
  17. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6(3):248CrossRefGoogle Scholar
  18. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol 99(5):1036–1043CrossRefGoogle Scholar
  19. Kyogoku N, Ikeda H, Tsuchikawa T, Abiko T, Fujiwara A, Maki T, Yamamura Y, Ichinokawa M, Tanaka K, Imai N, Miyahara Y, Kageyama S, Shiku H, Hirano S (2016) Time-dependent transition of the immunoglobulin G subclass and immunoglobulin E response in cancer patients vaccinated with cholesteryl pullulan-melanoma antigen gene-A4 nanogel. Oncol Lett 12:4493–4504CrossRefGoogle Scholar
  20. Layton JB, Butler AM, Panozzo CA, Brookhart MA (2018) Rotavirus vaccination and short-term risk of adverse events in US infants. Paediatr Perinat Epidemiol 32(5):448–457CrossRefGoogle Scholar
  21. Li D, Kordalivand N, Fransen MF, Ossendorp F, Raemdonck K, Vermonden T, Hennink WE, Van Nostrum CF (2015) Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv Funct Mater 25(20):2993–3003CrossRefGoogle Scholar
  22. Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MG, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF (2016) Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. Nanoscale 8:19592–19604CrossRefGoogle Scholar
  23. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2017) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14:1):1–1)12Google Scholar
  24. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, HobokenCrossRefGoogle Scholar
  25. Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR (2019) Mucosal vaccines and technology. Clin Exp Immunol 196(2):205–214Google Scholar
  26. Miyamoto N, Mochizuki S, Sakurai K (2014) Enhanced immunostimulation with crosslinked CpG-DNA/β-1, 3-glucan nanoparticle through hybridization. Chem Lett 43(7):991–993CrossRefGoogle Scholar
  27. Miyamoto N, Mochizuki S, Fujii S, Yoshida K, Sakurai K (2017) Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in β-glucan nanogel and its antitumor effect. Bioconjug Chem 28:565–573CrossRefGoogle Scholar
  28. Moad G, Solomon DH (2006) The chemistry of radical polymerization. Elsevier, AmsterdamGoogle Scholar
  29. Muraoka D, Harada N, Hayashi T, Tahara Y, Momose F, Sawada S, Mukai SA, Akiyoshi K, Shiku H (2014) Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 8:9209–9218CrossRefGoogle Scholar
  30. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557CrossRefGoogle Scholar
  31. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578CrossRefGoogle Scholar
  32. Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte K, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J (2016) pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci 113(29):8098–8103CrossRefGoogle Scholar
  33. Nuhn L, Van Hoecke L, Deswarte K, Schepens B, Li Y, Lambrecht BN, De Koker S, David SA, Saelens X, De Geest BG (2018) Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials 178:643–651CrossRefGoogle Scholar
  34. Patarroyo ME, Bermúdez A, Moreno-Vranich A (2012) Towards the development of a fully protective Plasmodium falciparum antimalarial vaccine. Expert Rev Vaccines 11(9):1057–1070CrossRefGoogle Scholar
  35. Purwada A, Tian YF, Huang W, Rohrbach KM, Deol S, August A, Singh A (2016) Self-assembly protein nanogels for safer Cancer immunotherapy. Adv Healthc Mater 5:1413–1419CrossRefGoogle Scholar
  36. Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5(4):707–715CrossRefGoogle Scholar
  37. Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R (2016) Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 15(7):915–925CrossRefGoogle Scholar
  38. Ross AC, Chen Q, Ma Y (2011) Vitamin a and retinoic acid in the regulation of B-cell development and antibody production. Vitam Horm 86:103–126CrossRefGoogle Scholar
  39. Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1(7):965–977CrossRefGoogle Scholar
  40. Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126CrossRefGoogle Scholar
  41. Toyoda M, Hama S, Ikeda Y, Nagasaki Y, Kogure K (2015) Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int J Pharm 483:110–114CrossRefGoogle Scholar
  42. Uthaman S, Maya S, Jayakumar R, Cho CS, Park IK (2014) Carbohydrate-based nanogels as drug and gene delivery systems. J Nanosci Nanotechnol 14(1):694–704CrossRefGoogle Scholar
  43. Verheyen E, Delain-Bioton L, van der Wal S, el Morabit N, Barendregt A, Hennink WE, van Nostrum CF (2010) Conjugation of methacrylamide groups to a model protein via a reducible linker for immobilization and subsequent triggered release from hydrogels. Macromol Biosci 10(12):1517–1526CrossRefGoogle Scholar
  44. Wang C, Li P, Liu L, Pan H, Li H, Cai L, Ma Y (2016) Self-adjuvanted nanovaccine for cancer immunotherapy: role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79:88–100CrossRefGoogle Scholar
  45. Yadav H, Al Halabi N, Alsalloum G (2017) Nanogels as novel drug delivery systems—a review. J Pharm Pharm Res 1(1):5Google Scholar
  46. Zhang X, Malhotra S, Molina M, Haag R (2015) Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973CrossRefGoogle Scholar
  47. Zhang MY, Guo J, Hu XM, Zhao SQ, Li SL, Wang J (2019) An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct 10:4361.  https://doi.org/10.1039/c9fo00865aCrossRefGoogle Scholar
  48. Zhu G, Zhang F, Ni Q, Niu G, Chen X (2017) Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 11(3):2387–2392CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations