Gold-Based Mucosal Nanovaccines

  • Sergio Rosales-Mendoza
  • Omar González-Ortega


The development of new, efficacious subunit vaccines depends on the availability of adjuvants and delivery vehicles that favor proper antigen delivery and immunostimulation, able to provoke robust adaptive immune responses. Moreover, vaccines administered by non-parenteral routes are highly desirable due to costs reduction and high patient compliance. Gold nanoparticles (AuNPs) are biocompatible materials that can be conjugated with antigens, rendering attractive vaccine candidates. In this chapter, the state of the art on the development of AuNPs-based vaccines is transmitted along with a description of the synthesis and bioconjugation approaches applied in this technology. Promising AuNPs-based vaccine candidates developed thus far comprise vaccines against influenza, glanders, and tetanus; these vaccine candidates have been characterized at the preclinical level with promising findings in terms of protection against the target disease in animal models. Key perspectives for this field are also identified.


Antigen conjugation Antigen presenting cells Delivery vehicle Glanders Influenza Tetanus 


  1. Abad JM, Mertens SFL, Pita M et al (2005) Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689–5694CrossRefGoogle Scholar
  2. Almeida JP, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3):503–514CrossRefGoogle Scholar
  3. Andreescu D, Sau TK, Goia DV (2006) Stabilizer-free nanosized gold sols. J Colloid Interface Sci 298:742–751CrossRefGoogle Scholar
  4. Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V (2014) Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan-functionalized gold nanoparticles and botanical adjuvant: characterization, immunogenicity, and stability assessment. J Pharm Sci 103(11):3448–3456CrossRefGoogle Scholar
  5. Barrett S (2004) Eradication versus control: the economics of global infectious disease policies. Bull World Health Organ 82:683–688Google Scholar
  6. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426CrossRefGoogle Scholar
  7. Bloom D, Canning D, Weston M (2005) The value of vaccination. World Econ 6:15–39Google Scholar
  8. Boraschi D, Italiani P (2015) From antigen delivery system to adjuvanticy: the board application of nanoparticles in vaccinology. Vaccines (Basel) 3(4):930–939CrossRefGoogle Scholar
  9. Brandenberger C, Rothen-Rutishauser B, Mühlfeld C et al (2010) Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242(1):56–65CrossRefGoogle Scholar
  10. Cappellano G, Comi C, Chiocchetti A, Dianzani U (2019) Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. Int J Mol Sci 20(1):pii: E204. Scholar
  11. Cohn L, Delamarre L (2014) Dendritic cell-targeted vaccines. Front Immunol 5:255CrossRefGoogle Scholar
  12. Dul M, Nikolic T, Stefanidou M, McAteer MA, Williams P, Mous J, Roep BO, Kochba E, Levin Y, Peakman M, Wong FS, Dayan CM, Tatovic D, Coulman SA, Birchall JC, EE-ASI Consortium (2019) Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy. Int J Pharm 562:303–312CrossRefGoogle Scholar
  13. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:839–834CrossRefGoogle Scholar
  14. Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG (2018) Peptide chemistry toolbox - transforming natural peptides into peptide therapeutics. Bioorg Med Chem 26(10):2759–2765CrossRefGoogle Scholar
  15. Fytianos K, Rodriguez-Lorenzo L, Clift MJ et al (2015) Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine 11(3):633–644CrossRefGoogle Scholar
  16. Gargett T, Abbas MN, Rolan P, Price JD, Gosling KM, Ferrante A, Ruszkiewicz A, Atmosukarto IIC, Altin J, Parish CR, Brown MP (2018) Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother 67(9):1461–1472CrossRefGoogle Scholar
  17. Gregory AE, Judy BM, Qazi O et al (2015) A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine 11(2):447–456CrossRefGoogle Scholar
  18. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936CrossRefGoogle Scholar
  19. Hu M, Qian L, Brinãs RP, et al. (2007) Protein assembly through site-specific interactions with gold nanoparticles. MRS Proceedings, 951, Cambridge University PressGoogle Scholar
  20. Huckaby JT, Lai SK (2018) PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 124:125–139CrossRefGoogle Scholar
  21. Kamnev AA, Dykman LA, Tarantilis PA, Polissiou MG (2002) Spectroimmunochemistry using colloidal gold bioconjugates. Biosci Rep 22:541–547CrossRefGoogle Scholar
  22. Khan AU, Khan M, Malik N, Cho MH, Khan MM (2019) Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng 42(1):1–15CrossRefGoogle Scholar
  23. Liang X, Wei H, Cui Z, Deng J, Zhang Z, You X, Zhang XE (2011) Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Analyst 136(1):179–183CrossRefGoogle Scholar
  24. Loo C, Hirsh L, Lee M et al (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30:1012–1014CrossRefGoogle Scholar
  25. Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, Samuel JE, Titball RW, Torres AG (2017) The use of reverse vaccinology in the design and construction of nano-glycoconjugate vaccines against Burkholderia pseudomallei. Clin Vaccine Immunol 24(11):e00206–e00217CrossRefGoogle Scholar
  26. Niidome T, Nakashima K, Takahashi H, Niidome Y (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978–1979CrossRefGoogle Scholar
  27. Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB et al (2011) Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5(8):6434–6448CrossRefGoogle Scholar
  28. Ouellette M, Masse F, Lefebvre-Demers M, Maestracci Q, Grenier P, Millar R, Bertrand N, Prieto M, Boisselier É (2018) Insights into gold nanoparticles as a mucoadhesive system. Sci Rep 8(1):14357CrossRefGoogle Scholar
  29. Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183CrossRefGoogle Scholar
  30. Pal A, Shah S, Devi S (2007) Synthesis of Au, Ag and Au–Ag alloy nanoparticles in aqueous polymer solution. Colloids Surf A Physicochem Eng Asp 302:51–57CrossRefGoogle Scholar
  31. Pearson RM, Podojil JR, Shea LD, King NJ, Miller SD, Getts DR (2019) Overcoming challenges in treating autoimmuntity: development of tolerogenic immune-modifying nanoparticles. Nanomedicine 18:282–291CrossRefGoogle Scholar
  32. Pokharkar V, Bhumkar D, Suresh K et al (2011) Gold nanoparticles as a potential carrier for transmucosal vaccine delivery. J Biomed Nanotechnol 7(1):57–59CrossRefGoogle Scholar
  33. Quach QH, Ang SK, Chu JJ, Kah JCY (2018) Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 78:224–235CrossRefGoogle Scholar
  34. Salazar-González JA, González-Ortega O, Rosales-Mendoza S (2015) Gold nanoparticles and vaccine development. Expert Rev Vaccines 14(9):1197–1211CrossRefGoogle Scholar
  35. Shah RR, Hassett KJ, Brito LA (2017) Overview of vaccine adjuvants: introduction, history, and current status. Methods Mol Biol 1494:1–13CrossRefGoogle Scholar
  36. Shakya AK, Chowdhury MYE, Tao W, Gill HS (2016) Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release 240:394–413CrossRefGoogle Scholar
  37. Song WJ, Du JZ, Sun TM, Zhang PZ, Wang J (2010) Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6(2):239–246CrossRefGoogle Scholar
  38. Staroverov SA, Volkov AA, Mezhenny PV, Domnitsky IY, Fomin AS, Kozlov SV, Dykman LA, Guliy OI (2019) Prospects for the use of spherical gold nanoparticles in immunization. Appl Microbiol Biotechnol 103(1):437–447CrossRefGoogle Scholar
  39. Sullivan SG, Price OH, Regan AK (2019) Burden, effectiveness and safety of influenza vaccines in elderly, paediatric and pregnant populations. Ther Adv Vaccines Immunother 7:2515135519826481Google Scholar
  40. Tagliabue A, Rappuoli R (2018) Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 9:1068CrossRefGoogle Scholar
  41. Tao W, Gill HS (2015) M2e-immobilized gold nanoparticles as influenza a vaccine: role of soluble M2e and longevity of protection. Vaccine 33(20):2307–2315CrossRefGoogle Scholar
  42. Tao W, Ziemer KS, Gill HS (2014) Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza a virus. Nanomedicine (Lond) 9(2):237–251CrossRefGoogle Scholar
  43. Tao W, Hurst BL, Shakya AK, Uddin MJ, Ingrole RS, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S, Tarbet EB, Gill HS (2017) Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza a viruses. Antivir Res 141:62–72CrossRefGoogle Scholar
  44. Tello-Olea M, Rosales-Mendoza S, Campa-Córdova AI, Palestino G, Luna-González A, Reyes-Becerril M, Velazquez E, Hernandez-Adame L, Angulo C (2019) Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol 84:756–767CrossRefGoogle Scholar
  45. Torres AG, Gregory AE, Hatcher CL et al (2015) Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 33(5):686–692CrossRefGoogle Scholar
  46. Turkevich J (1985) Colloidal gold. Part 1: historical and preparative aspects, morphology and structure. Gold Bull 18:86–91CrossRefGoogle Scholar
  47. Villiers C, Freitas H, Couderc R, Villiers MB, Marche P (2010) Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60CrossRefGoogle Scholar
  48. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1-2):40–56CrossRefGoogle Scholar
  49. Wang C, Zhu W, Luo Y, Wang BZ (2018) Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine 14(4):1349–1360CrossRefGoogle Scholar
  50. Yao M, He L, McClements DJ, Xiao H (2015) Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem 63(36):8044–8049CrossRefGoogle Scholar
  51. Zhang D, Neumann O, Wang H et al (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9:666–671CrossRefGoogle Scholar
  52. Zhang L, Hu C, Yang W, Liu X, Wu Y (2016) Chemical synthesis, versatile structures and functions of tailorable adjuvants for optimizing Oral vaccination. ACS Appl Mater Interfaces 8(51):34933–34950CrossRefGoogle Scholar
  53. Zhang L, Yang W, Hu C, Wang Q, Wu Y (2018) Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Int J Nanomedicine 13:2973–2987CrossRefGoogle Scholar
  54. Zhou N, Wang J, Chen T et al (2006) Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design. Anal Chem 78:5227–5230CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Rosales-Mendoza
    • 1
  • Omar González-Ortega
    • 2
  1. 1.Facultad de Ciencias Químicas, Centro de Investigación en Ciencias de la Salud y BiomedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis Potosí San Luis PotosíMexico

Personalised recommendations