Advertisement

0\(\nu \beta \beta \) Extraction

  • Jack DungerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The focus of this chapter is the application of the OXO framework to 0\(\nu \beta \beta \) extraction in SNO+. Fake data sets with a range of assumed 0\(\nu \beta \beta \) rates are produced and 2D Bayesian fits in event radius and energy are used to estimate the expected \(m_{\beta \beta }\) 90% limit and \(3\sigma \) discovery level. In addition, the \(\Delta \log \mathcal {L}\) statistic, introduced to separate 0\(\nu \beta \beta \) from \(^{60}\)Co in Chap.  5 is introduced as a third fit dimension to drastically improve the \(3 \sigma \) SNO+ discovery potential.

References

  1. 1.
    Coulter I (2017) Alpha-N in Te-Diol, SNO+-docDB 4332-v1Google Scholar
  2. 2.
    Lane R (2017) 0nu counting analysis update with Diol samples, SNO+-docDB 4539-v1Google Scholar
  3. 3.
    Gando A et al (2016) (KamLAND-Zen), Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys Rev Lett 117(8):082503.  https://doi.org/10.1103/PhysRevLett.117.109903,  https://doi.org/10.1103/PhysRevLett.117.082503, [Addendum: Phys. Rev. Lett.117, no.10,109903(2016)], arXiv:1605.02889
  4. 4.
    Alduino C et al (2017) (CUORE), First results from CUORE: a search for lepton number violation via \(0\nu \beta \beta \) Decay of \(^{130}\)Te. arXiv:1710.07988
  5. 5.
    Majumdar K On the measurement of optical scattering and studies of background rejection in the SNO+ Detector. PhD thesisGoogle Scholar
  6. 6.
    Aharmim B et al (2013) (SNO), Combined analysis of all three phases of solar neutrino data from the sudbury neutrino observatory. Phys Rev C88:025501.  https://doi.org/10.1103/PhysRevC.88.025501, arXiv:1109.0763
  7. 7.
    Mastbaum A (2015) Systematics and constraints in the double beta counting analysis, SNO+-docDB 3000-v1Google Scholar
  8. 8.
    Kotila J, Iachello F (2012) Phase-space factors for double-\(\beta \) decay. Phys. Rev. C 85:034316.  https://doi.org/10.1103/PhysRevC.85.034316
  9. 9.
    Fedor S, Vadim R, Amand F, Petr V (2013) 0\(\nu \beta \beta \) and 2\(\nu \beta \beta \) nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys Rev C 87:045501.  https://doi.org/10.1103/PhysRevC.87.045501
  10. 10.
    Barea J, Iachello F (2009) Neutrinoless double-\(\beta \) decay in the microscopic interacting boson model. Phys Rev C 79:044301.  https://doi.org/10.1103/PhysRevC.79.044301
  11. 11.
    Barea J, Kotila J, Iachello F (2013) Nuclear matrix elements for double-\(\beta \) decay. Phys Rev C 87:014315.  https://doi.org/10.1103/PhysRevC.87.014315
  12. 12.
    Menendez J, Poves A, Caurier E, Nowacki F (2009) Disassembling the nuclear matrix elements of the neutrinoless beta beta decay. Nucl Phys A 818:139–151.  https://doi.org/10.1016/j.nuclphysa.2008.12.005, arXiv:0801.3760
  13. 13.
    Juhani H, Jouni S (2015) Nuclear matrix elements for \(0\nu \beta \beta \) decays with light or heavy Majorana-neutrino exchange. Phys Rev C 91:024613.  https://doi.org/10.1103/PhysRevC.91.024613
  14. 14.
    Rodrguez TR, Martnez-Pinedo G (2013) Neutrinoless decay nuclear matrix elements in an isotopic chain. Phys Lett B 719(1):174–178.  https://doi.org/10.1016/j.physletb.2012.12.063, http://www.sciencedirect.com/science/article/pii/S0370269312013160
  15. 15.
    Mastbaum A (2017) Double-beta white paper sensitivity plots, SNO+-docDB 2593-v10Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Merantix AGBerlinGermany

Personalised recommendations