Advertisement

Backgrounds

  • Jack DungerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

At current maximum allowed \(^{130}\)Te 0\(\nu \beta \beta \) half-life of \(T_{1/2} = 1.5 \cdot 10^{25}\)yr, SNO+ would expect 278 signal counts per year at the 2\(\nu \beta \beta \) end point, 2.5 MeV, smeared by an energy resolution of 82 keV. Unfortunately, there are many significant sources of background in this region. Claiming a 0\(\nu \beta \beta \) signal, or setting a stringent limit on its rate, requires that these backgrounds are, first, kept to a minimum and, second, that they are well constrained to mitigate systematic error.

References

  1. 1.
    Beier G (2016) Study of direction reconstruction in scintillator. SNO+-docDB 3503-v4Google Scholar
  2. 2.
    Mottram M (2015) Cherenkov reconstructieon in scintillator at 2.5 MeV. SNO+-docDB 3116-v2Google Scholar
  3. 3.
    Aharmim B et al (SNO) (2013) Combined analysis of all three phases of solar neutrino data from the Sudbury neutrino observatory. Phys Rev C88:025501.  https://doi.org/10.1103/PhysRevC.88.025501, arXiv:1109.0763
  4. 4.
    Mastbaum A (2015) Systematics and constraints in the double beta counting analysis. SNO+-docDB 3000-v1 (2015)Google Scholar
  5. 5.
    O’Hare CAJ (2016) Dark matter astrophysical uncertainties and the neutrino floor. arXiv:1604.03858v1
  6. 6.
    Alduino C et al (2017) Measurement of the two-neutrino double-beta decay half-life of 130 Te with the CUORE-0 experiment. Eur Phys J C.  https://doi.org/10.1140/epjc/s10052-016-4498-6CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    O’Keeffe H, Lozza V (2017) Expected radioactive backgrounds in SNO+. SNO+-docDB 507-v35Google Scholar
  10. 10.
    Arpesella C et al (2008) New results on solar neutrino fluxes from 192 days of Borexino data, pp 1–6. arXiv:0805.3843v2
  11. 11.
    Alimonti et al G (2009) Nuclear instruments and methods in physics research a the liquid handling systems for the Borexino solar neutrino detector, vol 609, pp 58–78.  https://doi.org/10.1016/j.nima.2009.07.028
  12. 12.
    Majumdar K (2015) On the measurement of optical scattering and studies of background rejection in the SNO+ detector, Ph.D. thesis Google Scholar
  13. 13.
    Wilson JR (2016) Summary of the uranium and thorium chain background considerations for a low energy \(^8\)B solar neutrino analysis. SNO+-docDB 3531-v1Google Scholar
  14. 14.
    Wojcik M (1991) Measurement of radon diffusion and solubility constants in membranes, vol 61, pp 8–11Google Scholar
  15. 15.
    Kaptanoglu T (2016) Te Diol 0.5% loading approved BB sensitivity plots and documentation. SNO+-docDB 3689-v2 (2016)Google Scholar
  16. 16.
    Andringa S et al (2016) Current status and future prospects of the SNO+ experiment. arXiv:1508.05759v3 [physics. ins-det]. Accessed 28 Jan 2016
  17. 17.
    Lozza V, Petzoldt J (2015) Cosmogenic activation of a natural tellurium target. Astropart Phys 61:62–71.  https://doi.org/10.1016/j.astropartphys.2014.06.008. arXiv:1411.5947CrossRefADSGoogle Scholar
  18. 18.
    Coulter I (2013) Modelling and reconstruction of events in SNO+ related to future searches for lepton and baryon number violation, Ph.D. thesisGoogle Scholar
  19. 19.
    Biller S (2017) 0nbb sensitivity comparison plot. SNO+-docDB 4769Google Scholar
  20. 20.
    Alduino C et al (CUORE) (2017) First Results from CUORE: a search for lepton number violation via \(0\nu \beta \beta \) Decay of \(^{130}\)Te. arXiv:1710.07988

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Merantix AGBerlinGermany

Personalised recommendations