Advertisement

The SNO+ Experiment

  • Jack DungerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The SNO+ experiment will retrofit the SNO detector [1] by replacing its heavy water target with a liquid scintillator one. The SNO detector has several features that are ideal for new investigations.

References

  1. 1.
    Boger J et al (2000) The Sudbury neutrino observatory 449:172–207Google Scholar
  2. 2.
    Beltran B et al (2013) Measurement of the cosmic ray and neutrino-induced muon flux at the sudbury neutrino observatory 01:1–17. arXiv:0902.2776v1
  3. 3.
    Eguchi K et al (2003) First results from KamLAND : evidence for reactor antineutrino disappearance (January):1–6.  https://doi.org/10.1103/PhysRevLett.90.021802
  4. 4.
    Fukuda S et al (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 501(2):418–462.  https://doi.org/10.1016/S0168-9002(03)00425-X, http://www.sciencedirect.com/science/article/pii/S016890020300425X
  5. 5.
    Alimonti G et al (2008) The Borexino detector at the Laboratori Nazionali del Gran Sasso (June). arXiv:0806.2400v1
  6. 6.
    Alimonti G et al (2009) Nuclear instruments and methods in physics research a the liquid handling systems for the Borexino solar neutrino detector 609:58–78.  https://doi.org/10.1016/j.nima.2009.07.028
  7. 7.
    Andringa S et al (2016) Current status and future prospects of the SNO + Experiment. arXiv:1508.05759v3 [physics.ins-det]. Accessed 28 Jan 2016
  8. 8.
    Caden E (2017) Private communicationGoogle Scholar
  9. 9.
    Lay MD, Lyon MJ (1996) An experimental and Monte Carlo investigation of the R1408 Hamamatsu 8-inch photomultiplier tube and associated concentrator to be used in the Sudbury Neutrino Observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 383(23):495–505.  https://doi.org/10.1016/S0168-9002(96)00861-3, http://www.sciencedirect.com/science/article/pii/S0168900296008613
  10. 10.
    Biller SD et al (1999) Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 432(2):364–373.  https://doi.org/10.1016/S0168-9002(99)00500-8, http://www.sciencedirect.com/science/article/pii/S0168900299005008
  11. 11.
    Heintzelman W, Private communication, Private communicationGoogle Scholar
  12. 12.
    Wan Chan Tseung à H, Kaspar J, Tolich N (2011) Nuclear instruments and methods in physics research a measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy. Nucl Inst Methods Phys Res A 654(1):318–323.  https://doi.org/10.1016/j.nima.2011.06.095, http://dx.doi.org/10.1016/j.nima.2011.06.095
  13. 13.
    Chen MC (2011) Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO + experiment 00:1–5. arXiv:1102.0797v1
  14. 14.
    Ford RJ (2015) A scintillator purification plant and fluid handling system for SNO+. In: American institute of physics conference series. American Institute of Physics Conference Series, vol 1672, p 080003.  https://doi.org/10.1063/1.4927998, arXiv:1506.08746
  15. 15.
    Caleb Miller (2016) Analysis of cosmogenic impurities in tellurium and development of tellurium loading for the SNO+ experimentGoogle Scholar
  16. 16.
    Wright A (2017) Te Dev R&D Pre-summary, SNO+-docDB 4545-v1Google Scholar
  17. 17.
    Jelley JV (1961) Cerenkov radiation: its origin, properties and applications. Contemp Phys 3(1).  https://doi.org/10.1080/00107516108204445
  18. 18.
    Mastbaum A, Barros N, Coulter I, Kaptanoglu T, Segui L. Optics overview and proposed changes to RAT, SNO+-docDB 3461Google Scholar
  19. 19.
    Segui L. Scintillator model: comparison between new data and old model, SNO+-docDB 2774Google Scholar
  20. 20.
    Dai X. Te-diol tests at Queen’s, SNO+-docDB 3315Google Scholar
  21. 21.
    Segui L. Te-diol studies: stability and optics, SNO+-docDB 3880Google Scholar
  22. 22.
    Liu Y. Attenuation and scattering of TeBD & the cocktail, SNO+-docDB 3880Google Scholar
  23. 23.
    Suekane F et al (2004) An overview of the KamLAND 1-kiloton liquid scintillator. ArXiv Physics e-prints, arXiv:physics/0404071
  24. 24.
    Stainforth R. Characterising the optical response of the SNO+ detector. PhD thesisGoogle Scholar
  25. 25.
    Alves R et al (2015) (SNO+), The calibration system for the photomultiplier array of the SNO+ experiment. JINST 10(03):P03002.  https://doi.org/10.1088/1748-0221/10/03/P03002, arXiv:1411.4830
  26. 26.
    Gagnon N, Jones C, Lidgard J, Majumdar K, Reichold A, Segui L, Clark K, Coulter I. The SMELLIE hardware manual, SNO+-docDB 3511-v2Google Scholar
  27. 27.
    Majumdar K. On the measurement of optical scattering and studies of background rejection in the SNO+ detector. PhD thesisGoogle Scholar
  28. 28.
    Peeters S. Source and interface list, SNO+-docDB 1308-v9Google Scholar
  29. 29.
    Ponkratenko OA, Tretyak VI, Zdesenko YuG (2000) The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei. Phys Atom Nucl 63:1282–1287.  https://doi.org/10.1134/1.855784, [Yad. Fiz. 63,1355(2000)], arXiv:nucl-ex/0104018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Merantix AGBerlinGermany

Personalised recommendations