Advertisement

Interplay of Dark Matter Direct Detection and Neutrino Experiments

  • Roni HarnikEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Dark matter detectors are approaching the neutrino floor. As standard model neutrino rates get close to being probed, dark matter experiments begin to probe neutrino physics in an interesting way, which I review here. I also present some frameworks in which deep neutrino detectors may serve as dark matter direct detection experiments.

Notes

Acknowledgements

I would like to thank the Simons Foundation and the organizers for an interesting and stimulating workshop. I would also like to thank my collaborators on the projects connected to this writeup—J. Kopp, P. Machado, Y. Grossman, O. Telem, Y. Zhang, P. Fox, J. Eby, G. Kribs, as well as the CONNIE collaboration. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

References

  1. 1.
    J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014).  https://doi.org/10.1103/PhysRevD.89.023524ADSCrossRefGoogle Scholar
  2. 2.
    R. Harnik, J. Kopp, P.A.N. Machado, JCAP 1207, 026 (2012).  https://doi.org/10.1088/1475-7516/2012/07/026ADSCrossRefGoogle Scholar
  3. 3.
    M. Agostini, et al. (2017) Google Scholar
  4. 4.
    E. Aprile et al., Eur. Phys. J. C 77(12), 881 (2017).  https://doi.org/10.1140/epjc/s10052-017-5326-3ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Beda, V.B. Brudanin, V.G. Egorov, D.V. Medvedev, V.S. Pogosov, M.V. Shirchenko, A.S. Starostin, Adv. High Energy Phys. 2012, 350150 (2012).  https://doi.org/10.1155/2012/350150CrossRefGoogle Scholar
  6. 6.
    A. Aguilar-Arevalo et al., J. Phys. Conf. Ser. 761(1), 012057 (2016).  https://doi.org/10.1088/1742-6596/761/1/012057CrossRefGoogle Scholar
  7. 7.
    A. Aguilar-Arevalo et al., Phys. Rev. D 94(8), 082006 (2016).  https://doi.org/10.1103/PhysRevD.94.082006ADSCrossRefGoogle Scholar
  8. 8.
    D. Tucker-Smith, N. Weiner, Phys. Rev. D 64, 043502 (2001).  https://doi.org/10.1103/PhysRevD.64.043502ADSCrossRefGoogle Scholar
  9. 9.
    J. Bramante, P.J. Fox, G.D. Kribs, A. Martin, Phys. Rev. D 94(11), 115026 (2016).  https://doi.org/10.1103/PhysRevD.94.115026ADSCrossRefGoogle Scholar
  10. 10.
    J. Eby, P. Fox, R. Harnik, G. KribsGoogle Scholar
  11. 11.
    B. Feldstein, P.W. Graham, S. Rajendran, Phys. Rev. D 82, 075019 (2010).  https://doi.org/10.1103/PhysRevD.82.075019ADSCrossRefGoogle Scholar
  12. 12.
    M. Pospelov, N. Weiner, I. Yavin, Phys. Rev. D 89(5), 055008 (2014).  https://doi.org/10.1103/PhysRevD.89.055008ADSCrossRefGoogle Scholar
  13. 13.
    Y. Grossman, R. Harnik, O. Telem, Y. Zhang (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsFermilabBataviaUSA

Personalised recommendations