Direct Detection of Sub-GeV Dark Matter: Models and Constraints

  • Rouven EssigEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)


I will make some general comments about the search for dark matter and other new particles, contrasting current research trends with those 10 years ago. I will then focus on recent ideas for direct detection experiments to search for dark matter with masses in the MeV-to-GeV range. I will then discuss briefly three topics: (i) the solar neutrino background (or “how low in cross section (interaction strength) can future direct-detection experiments probe before solar neutrinos become an irreducible background”), (ii) novel constraints on low-mass dark matter from Supernova 1987A, and (iii) strongly interacting dark matter (or “how large in cross section can direct-detection experiments probe before terrestrial effects stop sub-GeV dark matter from reaching the detector”).



I would like to thank the Simons Foundation for their generous support of this symposium. I would also like to thank my collaborators on the projects discussed in this proceeding, Jae Hyeok Chang, Timon Emken, Chris Kouvaris, Sam McDermott, Mukul Sholapurkar, and Tien-Tien Yu. My research is currently supported by the DoE under Grant Nos. DE-SC0017938 and DE-SC0018952, the Heising-Simons Foundation under Grant No. 79921, and the US-Israel BSF under Grant No. 2016153.


  1. 1.
  2. 2.
    R. Essig, et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013 (2013).
  3. 3.
  4. 4.
    M. Battaglieri, et al. (2017)Google Scholar
  5. 5.
    G. Angloher et al., Eur. Phys. J. C 77(9), 637 (2017). Scholar
  6. 6.
    R. Essig, J. Mardon, T. Volansky, Phys. Rev. D 85, 076007 (2012). Scholar
  7. 7.
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109, 021301 (2012). Scholar
  8. 8.
    J. Angle et al., Phys. Rev. Lett. 107, 051301 (2011)., [Erratum: Phys. Rev. Lett. 110, 249901 (2013)]
  9. 9.
    E. Aprile et al., Phys. Rev. D 94(9), 092001 (2016)., [Erratum: Phys. Rev. D 95(5), 059901 (2017)]
  10. 10.
    P. Agnes, et al., Constraints on sub-GeV dark-matter–electron scattering from the darkSide-50 experiment. Phys. Rev. Lett. 121(11), 111303 (2018).
  11. 11.
    A. Bernstein, R. Essig, M. Fernandez-Serra, A. Kopec, R. Lang, J. Long, K. Ni, P. Sorensen, J. Xu, LBECA: Low background electron counting apparatus (Unpublished)Google Scholar
  12. 12.
    J. Tiffenberg, M. Sofo-Haro, A. Drlica-Wagner, R. Essig, Y. Guardincerri, S. Holland, T. Volansky, T.T. Yu, Phys. Rev. Lett. 119(13), 131802 (2017).
  13. 13.
    M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg, M. Sofo haro, T. Volansky, T.T. Yu, SENSEI: First direct-detection constraints on sub-GeV dark matter from a surface run. Phys. Rev. Lett. 121(6), 061803 (2018).
  14. 14.
    R.K. Romani et al., Appl. Phys. Lett. 112, 043501 (2018). Scholar
  15. 15.
    R. Agnese et al., First dark matter constraints from a super CDMS single-charge sensitive detector. Phys. Rev. Lett. 121(5), 051301 (2018)., [Erratum: Phys. Rev. Lett. 122(6), 069901 (2019)]
  16. 16.
    R. Essig, M. Sholapurkar, T.T. Yu, Phys. Rev. D 97(9), 095029 (2018). Scholar
  17. 17.
    R. Essig, T. Volansky, T.T. Yu, Phys. Rev. D 96(4), 043017 (2017). Scholar
  18. 18.
    J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014). Scholar
  19. 19.
    J.H. Chang, R. Essig, S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. JHEP 09, 051 (2018).
  20. 20.
    G.G. Raffelt, Stars as Laboratories for Fundamental Physics (1996).
  21. 21.
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, T.T. Yu, JHEP 05, 046 (2016). Scholar
  22. 22.
    H. Vogel, J. Redondo, JCAP 1402, 029 (2014). Scholar
  23. 23.
    A.A. Prinz et al., Phys. Rev. Lett. 81, 1175 (1998). Scholar
  24. 24.
    S.D. McDermott, H.B. Yu, K.M. Zurek, Phys. Rev. D 83, 063509 (2011). Scholar
  25. 25.
    S. Davidson, S. Hannestad, G. Raffelt, JHEP 05, 003 (2000). Scholar
  26. 26.
    T. Emken, R. Essig, C. Kouvaris, M. Sholapurkar, Direct detection of strongly interacting sub-GeV dark matter via electron recoils. JCAP 1909(09), 070 (2019). Scholar
  27. 27.
    T. Emken, C. Kouvaris, I.M. Shoemaker, Phys. Rev. D 96(1), 015018 (2017). Scholar
  28. 28.
    T. Emken, C. Kouvaris, JCAP 1710(10), 031 (2017). Scholar
  29. 29.
    B.J. Kavanagh, R. Catena, C. Kouvaris, JCAP 1701(01), 012 (2017). Scholar
  30. 30.
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018). Scholar
  31. 31.
    R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D98(10), 103005 (2018).
  32. 32.
    A. Falkowski, K. Petraki, 21cm Absorption Signal From Charge Sequestration (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookUSA

Personalised recommendations