Advertisement

Direct Detection of Sub-GeV Dark Matter: Models and Constraints

  • Rouven EssigEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

I will make some general comments about the search for dark matter and other new particles, contrasting current research trends with those 10 years ago. I will then focus on recent ideas for direct detection experiments to search for dark matter with masses in the MeV-to-GeV range. I will then discuss briefly three topics: (i) the solar neutrino background (or “how low in cross section (interaction strength) can future direct-detection experiments probe before solar neutrinos become an irreducible background”), (ii) novel constraints on low-mass dark matter from Supernova 1987A, and (iii) strongly interacting dark matter (or “how large in cross section can direct-detection experiments probe before terrestrial effects stop sub-GeV dark matter from reaching the detector”).

Notes

Acknowledgements

I would like to thank the Simons Foundation for their generous support of this symposium. I would also like to thank my collaborators on the projects discussed in this proceeding, Jae Hyeok Chang, Timon Emken, Chris Kouvaris, Sam McDermott, Mukul Sholapurkar, and Tien-Tien Yu. My research is currently supported by the DoE under Grant Nos. DE-SC0017938 and DE-SC0018952, the Heising-Simons Foundation under Grant No. 79921, and the US-Israel BSF under Grant No. 2016153.

References

  1. 1.
  2. 2.
    R. Essig, et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013 (2013). http://inspirehep.net/record/1263039/files/arXiv:1311.0029.pdf
  3. 3.
  4. 4.
    M. Battaglieri, et al. (2017)Google Scholar
  5. 5.
    G. Angloher et al., Eur. Phys. J. C 77(9), 637 (2017).  https://doi.org/10.1140/epjc/s10052-017-5223-9ADSCrossRefGoogle Scholar
  6. 6.
    R. Essig, J. Mardon, T. Volansky, Phys. Rev. D 85, 076007 (2012).  https://doi.org/10.1103/PhysRevD.85.076007ADSCrossRefGoogle Scholar
  7. 7.
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109, 021301 (2012).  https://doi.org/10.1103/PhysRevLett.109.021301ADSCrossRefGoogle Scholar
  8. 8.
    J. Angle et al., Phys. Rev. Lett. 107, 051301 (2011).  https://doi.org/10.1103/PhysRevLett.110.249901,  https://doi.org/10.1103/PhysRevLett.107.051301. [Erratum: Phys. Rev. Lett. 110, 249901 (2013)]
  9. 9.
    E. Aprile et al., Phys. Rev. D 94(9), 092001 (2016).  https://doi.org/10.1103/PhysRevD.94.092001,  https://doi.org/10.1103/PhysRevD.95.059901. [Erratum: Phys. Rev. D 95(5), 059901 (2017)]
  10. 10.
    P. Agnes, et al., Constraints on sub-GeV dark-matter–electron scattering from the darkSide-50 experiment. Phys. Rev. Lett. 121(11), 111303 (2018). https://doi.org/10.1103/PhysRevLett.121.111303
  11. 11.
    A. Bernstein, R. Essig, M. Fernandez-Serra, A. Kopec, R. Lang, J. Long, K. Ni, P. Sorensen, J. Xu, LBECA: Low background electron counting apparatus (Unpublished)Google Scholar
  12. 12.
    J. Tiffenberg, M. Sofo-Haro, A. Drlica-Wagner, R. Essig, Y. Guardincerri, S. Holland, T. Volansky, T.T. Yu, Phys. Rev. Lett. 119(13), 131802 (2017).  https://doi.org/10.1103/PhysRevLett.119.131802
  13. 13.
    M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg, M. Sofo haro, T. Volansky, T.T. Yu, SENSEI: First direct-detection constraints on sub-GeV dark matter from a surface run. Phys. Rev. Lett. 121(6), 061803 (2018). https://doi.org/10.1103/PhysRevLett.121.061803
  14. 14.
    R.K. Romani et al., Appl. Phys. Lett. 112, 043501 (2018).  https://doi.org/10.1063/1.5010699ADSCrossRefGoogle Scholar
  15. 15.
    R. Agnese et al., First dark matter constraints from a super CDMS single-charge sensitive detector. Phys. Rev. Lett. 121(5), 051301 (2018). https://doi.org/10.1103/PhysRevLett.122.069901, https://doi.org/10.1103/PhysRevLett.121.051301. [Erratum: Phys. Rev. Lett. 122(6), 069901 (2019)]
  16. 16.
    R. Essig, M. Sholapurkar, T.T. Yu, Phys. Rev. D 97(9), 095029 (2018).  https://doi.org/10.1103/PhysRevD.97.095029ADSCrossRefGoogle Scholar
  17. 17.
    R. Essig, T. Volansky, T.T. Yu, Phys. Rev. D 96(4), 043017 (2017).  https://doi.org/10.1103/PhysRevD.96.043017ADSCrossRefGoogle Scholar
  18. 18.
    J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014).  https://doi.org/10.1103/PhysRevD.89.023524ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Chang, R. Essig, S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. JHEP 09, 051 (2018). https://doi.org/10.1007/JHEP09(2018)051
  20. 20.
    G.G. Raffelt, Stars as Laboratories for Fundamental Physics (1996). http://wwwth.mpp.mpg.de/members/raffelt/mypapers/199613.pdf
  21. 21.
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, T.T. Yu, JHEP 05, 046 (2016).  https://doi.org/10.1007/JHEP05(2016)046ADSCrossRefGoogle Scholar
  22. 22.
    H. Vogel, J. Redondo, JCAP 1402, 029 (2014).  https://doi.org/10.1088/1475-7516/2014/02/029ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Prinz et al., Phys. Rev. Lett. 81, 1175 (1998).  https://doi.org/10.1103/PhysRevLett.81.1175ADSCrossRefGoogle Scholar
  24. 24.
    S.D. McDermott, H.B. Yu, K.M. Zurek, Phys. Rev. D 83, 063509 (2011).  https://doi.org/10.1103/PhysRevD.83.063509ADSCrossRefGoogle Scholar
  25. 25.
    S. Davidson, S. Hannestad, G. Raffelt, JHEP 05, 003 (2000).  https://doi.org/10.1088/1126-6708/2000/05/003ADSCrossRefGoogle Scholar
  26. 26.
    T. Emken, R. Essig, C. Kouvaris, M. Sholapurkar, Direct detection of strongly interacting sub-GeV dark matter via electron recoils. JCAP 1909(09), 070 (2019). https://doi.org/10.1088/1475-7516/2019/09/070CrossRefGoogle Scholar
  27. 27.
    T. Emken, C. Kouvaris, I.M. Shoemaker, Phys. Rev. D 96(1), 015018 (2017).  https://doi.org/10.1103/PhysRevD.96.015018ADSCrossRefGoogle Scholar
  28. 28.
    T. Emken, C. Kouvaris, JCAP 1710(10), 031 (2017).  https://doi.org/10.1088/1475-7516/2017/10/031ADSCrossRefGoogle Scholar
  29. 29.
    B.J. Kavanagh, R. Catena, C. Kouvaris, JCAP 1701(01), 012 (2017).  https://doi.org/10.1088/1475-7516/2017/01/012ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018).  https://doi.org/10.1038/nature25792ADSCrossRefGoogle Scholar
  31. 31.
    R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D98(10), 103005 (2018). https://doi.org/10.1103/PhysRevD.98.103005
  32. 32.
    A. Falkowski, K. Petraki, 21cm Absorption Signal From Charge Sequestration (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookUSA

Personalised recommendations