Advertisement

Quantum Metrology Techniques for Axion Dark Matter Detection

  • Aaron S. ChouEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Quantum metrology techniques can be used to dramatically improve the signal-to-noise ratio in experimental searches for dark matter axion waves. We first briefly review the cavity haloscope technique including quantum-limited measurements in the Glauber coherent state basis. Quantum non-demolition measurements in the Fock basis are then shown to offer much reduced background rates. Finally, we show that by preparing the cavity photon mode in a Fock state, the axion signal can be enhanced by stimulated emission.

Keywords

Axion Quantum Qubits Non-demolition Fock Coherent 

Notes

Acknowledgements

The experimental work outlined here is being performed in collaboration with Ankur Agrawal, Daniel Bowring, Akash Dixit, Konrad Lehnert, Reina Maruyama, and David Schuster. This work has been funded by the Heising-Simons Foundation. This document was prepared using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

References

  1. 1.
    P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).  https://doi.org/10.1103/PhysRevLett.51.1415ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    S.K. Lamoreaux, K.A. van Bibber, K.W. Lehnert, G. Carosi, Phys. Rev. D 88, 035020 (2013).  https://doi.org/10.1103/PhysRevD.88.035020
  4. 4.
    S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.M. Raimond, S. Haroche, Nature 446, 297 (2007).  https://doi.org/10.1038/nature05589ADSCrossRefGoogle Scholar
  5. 5.
    J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Scuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A - At. Mol. Opt. Phys. 76(4), 1 (2007).  https://doi.org/10.1103/PhysRevA.76.042319
  6. 6.
    B.R. Johnson, M.D. Reed, A.A. Houck, D.I. Schuster, L.S. Bishop, E. Ginossar, J.M. Gambetta, L. Dicarlo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nat. Phys. 6(9), 663 (2010).  https://doi.org/10.1038/nphys1710ADSCrossRefGoogle Scholar
  7. 7.
    B.C. Sanders, S.D. Bartlett, T. Rudolph, P.L. Knight, Phys. Rev. A 68, 042329 (2003).  https://doi.org/10.1103/PhysRevA.68.042329
  8. 8.
    M. Hofheinz, E.M. Weig, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, J.M. Martinis, A.N. Cleland, Nature 454(7202), 310 (2008).  https://doi.org/10.1038/nature07136ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FermilabBataviaUSA

Personalised recommendations