Illuminating Dark Matter pp 9-18 | Cite as
Constraining the Small-Scale Clustering of Dark Matter with Stellar Streams
Abstract
The degree of dark matter clustering on small scales presents a strong constraint on its physical nature. One of the most promising avenues for determining the clustering of dark matter on the smallest scales employs narrow stellar streams in the halo of the Milky Way. In this contribution, I review recent progress in modeling the effect of dark matter substructure on the structure of stellar streams and recent constraints on the amount of small (\({\approx }10^7\,M_\odot \)) dark matter substructure in the inner Milky Way halo. The next few years will likely see a large amount of progress both in the modeling of stellar streams and in the quantity and quality of the available data and I discuss future challenges and opportunities in this area.
Notes
Acknowledgements
Many thanks to the organizers of this workshop and to the Simons Foundation for providing a stimulating environment for discussions. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; funding reference number RGPIN-2015-05235) and by an Alfred P. Sloan Fellowship.
References
- 1.A. Klypin, A.V. Kravtsov, O. Valenzuela, F. Prada, ApJ 522, 82 (1999). https://doi.org/10.1086/307643ADSGoogle Scholar
- 2.B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, P. Tozzi, ApJ 524, L19 (1999). https://doi.org/10.1086/312287ADSGoogle Scholar
- 3.V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J.F. Navarro, C.S. Frenk, S.D.M. White, MNRAS 391, 1685 (2008). https://doi.org/10.1111/j.1365-2966.2008.14066.xADSGoogle Scholar
- 4.J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, D. Potter, J. Stadel, Nature 454, 735 (2008). https://doi.org/10.1038/nature07153ADSGoogle Scholar
- 5.L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95(4), 043541 (2017). https://doi.org/10.1103/PhysRevD.95.043541
- 6.S. Dodelson, L.M. Widrow, Phys. Rev. Lett. 72, 17 (1994). https://doi.org/10.1103/PhysRevLett.72.17ADSGoogle Scholar
- 7.X. Shi, G.M. Fuller, Phys. Rev. Lett. 82, 2832 (1999). https://doi.org/10.1103/PhysRevLett.82.2832ADSGoogle Scholar
- 8.R.B. Metcalf, P. Madau, ApJ 563, 9 (2001). https://doi.org/10.1086/323695ADSGoogle Scholar
- 9.N. Dalal, C.S. Kochanek, ApJ 572, 25 (2002). https://doi.org/10.1086/340303ADSGoogle Scholar
- 10.S. Vegetti, D.J. Lagattuta, J.P. McKean, M.W. Auger, C.D. Fassnacht, L.V.E. Koopmans, Nature 481, 341 (2012). https://doi.org/10.1038/nature10669ADSGoogle Scholar
- 11.Y. Hezaveh, N. Dalal, G. Holder, T. Kisner, M. Kuhlen, L. Perreault Levasseur, J. Cosmol. Astropart. Phys. 11, 048 (2016). https://doi.org/10.1088/1475-7516/2016/11/048Google Scholar
- 12.F.Y. Cyr-Racine, C.R. Keeton, L.A. Moustakas, arXiv (2018)Google Scholar
- 13.M. Odenkirchen, E.K. Grebel, C.M. Rockosi et al., ApJ 548, L165 (2001). https://doi.org/10.1086/319095
- 14.R.A. Ibata, G.F. Lewis, N.F. Martin, ApJ 819, 1 (2016). https://doi.org/10.3847/0004-637X/819/1/1ADSGoogle Scholar
- 15.J. Bovy, D. Erkal, J.L. Sanders, MNRAS 466, 628 (2017). https://doi.org/10.1093/mnras/stw3067ADSGoogle Scholar
- 16.D. Erkal, V. Belokurov, MNRAS 450, 1136 (2015). https://doi.org/10.1093/mnras/stv655ADSGoogle Scholar
- 17.K.V. Johnston, D.N. Spergel, C. Haydn, ApJ 570, 656 (2002). https://doi.org/10.1086/339791ADSGoogle Scholar
- 18.R.A. Ibata, G.F. Lewis, M.J. Irwin, T. Quinn, MNRAS 332, 915 (2002). https://doi.org/10.1046/j.1365-8711.2002.05358.xADSGoogle Scholar
- 19.R.G. Carlberg, ApJ 705, L223 (2009). https://doi.org/10.1088/0004-637X/705/2/L223ADSGoogle Scholar
- 20.R.G. Carlberg, ApJ 748, 20 (2012). https://doi.org/10.1088/0004-637X/748/1/20ADSGoogle Scholar
- 21.J. Bovy, ApJ 795, 95 (2014). https://doi.org/10.1088/0004-637X/795/1/95ADSGoogle Scholar
- 22.J. Bovy, ApJS 216, 29 (2015). https://doi.org/10.1088/0067-0049/216/2/29ADSGoogle Scholar
- 23.C.J. Grillmair, O. Dionatos, ApJ 643, L17 (2006). https://doi.org/10.1086/505111ADSGoogle Scholar
- 24.Gaia Collaboration, T. Prusti, J.H.J. de Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, M. Biermann, D.W. Evans, et al., A&A 595, A1 (2016). https://doi.org/10.1051/0004-6361/201629272
- 25.J. Bovy, A. Bahmanyar, T.K. Fritz, N.a. Kallivayalil, GCIP dynamics. Galaxy: struct. 833, 31 (2016). https://doi.org/10.3847/1538-4357/833/1/31ADSGoogle Scholar
- 26.J. Bovy, Phys. Rev. Lett. 116(12), 121301 (2016). https://doi.org/10.1103/PhysRevLett.116.121301
- 27.D. Erkal, V. Belokurov, MNRAS 454, 3542 (2015). https://doi.org/10.1093/mnras/stv2122ADSGoogle Scholar
- 28.S. Pearson, A.M. Price-Whelan, K.V. Johnston, Nat. Astron. 1, 633 (2017). https://doi.org/10.1038/s41550-017-0220-3ADSGoogle Scholar
- 29.N.C. Amorisco, F.A. Gómez, S. Vegetti, S.D.M. White, MNRAS 463, L17 (2016). https://doi.org/10.1093/mnrasl/slw148ADSGoogle Scholar
- 30.E. Balbinot, M. Gieles, MNRAS 474, 2479 (2018). https://doi.org/10.1093/mnras/stx2708ADSGoogle Scholar
- 31.E. D’Onghia, V. Springel, L. Hernquist, D. Keres, ApJ 709, 1138 (2010). https://doi.org/10.1088/0004-637X/709/2/1138ADSGoogle Scholar
- 32.T. Sawala, P. Pihajoki, P.H. Johansson, C.S. Frenk, J.F. Navarro, K.A. Oman, S.D.M. White, MNRAS 467, 4383 (2017). https://doi.org/10.1093/mnras/stx360ADSGoogle Scholar
- 33.S. Garrison-Kimmel, A. Wetzel, J.S. Bullock, P.F. Hopkins, M. Boylan-Kolchin, C.A. Faucher-Giguère, D. Kereš, E. Quataert, R.E. Sanderson, A.S. Graus, T. Kelley, MNRAS 471, 1709 (2017). https://doi.org/10.1093/mnras/stx1710ADSGoogle Scholar