Advertisement

Constraining the Small-Scale Clustering of Dark Matter with Stellar Streams

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

The degree of dark matter clustering on small scales presents a strong constraint on its physical nature. One of the most promising avenues for determining the clustering of dark matter on the smallest scales employs narrow stellar streams in the halo of the Milky Way. In this contribution, I review recent progress in modeling the effect of dark matter substructure on the structure of stellar streams and recent constraints on the amount of small (\({\approx }10^7\,M_\odot \)) dark matter substructure in the inner Milky Way halo. The next few years will likely see a large amount of progress both in the modeling of stellar streams and in the quantity and quality of the available data and I discuss future challenges and opportunities in this area.

Notes

Acknowledgements

Many thanks to the organizers of this workshop and to the Simons Foundation for providing a stimulating environment for discussions. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; funding reference number RGPIN-2015-05235) and by an Alfred P. Sloan Fellowship.

References

  1. 1.
    A. Klypin, A.V. Kravtsov, O. Valenzuela, F. Prada, ApJ 522, 82 (1999).  https://doi.org/10.1086/307643ADSGoogle Scholar
  2. 2.
    B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, P. Tozzi, ApJ 524, L19 (1999).  https://doi.org/10.1086/312287ADSGoogle Scholar
  3. 3.
    V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J.F. Navarro, C.S. Frenk, S.D.M. White, MNRAS 391, 1685 (2008).  https://doi.org/10.1111/j.1365-2966.2008.14066.xADSGoogle Scholar
  4. 4.
    J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, D. Potter, J. Stadel, Nature 454, 735 (2008).  https://doi.org/10.1038/nature07153ADSGoogle Scholar
  5. 5.
    L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95(4), 043541 (2017).  https://doi.org/10.1103/PhysRevD.95.043541
  6. 6.
    S. Dodelson, L.M. Widrow, Phys. Rev. Lett. 72, 17 (1994).  https://doi.org/10.1103/PhysRevLett.72.17ADSGoogle Scholar
  7. 7.
    X. Shi, G.M. Fuller, Phys. Rev. Lett. 82, 2832 (1999).  https://doi.org/10.1103/PhysRevLett.82.2832ADSGoogle Scholar
  8. 8.
    R.B. Metcalf, P. Madau, ApJ 563, 9 (2001).  https://doi.org/10.1086/323695ADSGoogle Scholar
  9. 9.
    N. Dalal, C.S. Kochanek, ApJ 572, 25 (2002).  https://doi.org/10.1086/340303ADSGoogle Scholar
  10. 10.
    S. Vegetti, D.J. Lagattuta, J.P. McKean, M.W. Auger, C.D. Fassnacht, L.V.E. Koopmans, Nature 481, 341 (2012).  https://doi.org/10.1038/nature10669ADSGoogle Scholar
  11. 11.
    Y. Hezaveh, N. Dalal, G. Holder, T. Kisner, M. Kuhlen, L. Perreault Levasseur, J. Cosmol. Astropart. Phys. 11, 048 (2016).  https://doi.org/10.1088/1475-7516/2016/11/048Google Scholar
  12. 12.
    F.Y. Cyr-Racine, C.R. Keeton, L.A. Moustakas, arXiv (2018)Google Scholar
  13. 13.
    M. Odenkirchen, E.K. Grebel, C.M. Rockosi et al., ApJ 548, L165 (2001).  https://doi.org/10.1086/319095
  14. 14.
    R.A. Ibata, G.F. Lewis, N.F. Martin, ApJ 819, 1 (2016).  https://doi.org/10.3847/0004-637X/819/1/1ADSGoogle Scholar
  15. 15.
    J. Bovy, D. Erkal, J.L. Sanders, MNRAS 466, 628 (2017).  https://doi.org/10.1093/mnras/stw3067ADSGoogle Scholar
  16. 16.
    D. Erkal, V. Belokurov, MNRAS 450, 1136 (2015).  https://doi.org/10.1093/mnras/stv655ADSGoogle Scholar
  17. 17.
    K.V. Johnston, D.N. Spergel, C. Haydn, ApJ 570, 656 (2002).  https://doi.org/10.1086/339791ADSGoogle Scholar
  18. 18.
    R.A. Ibata, G.F. Lewis, M.J. Irwin, T. Quinn, MNRAS 332, 915 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05358.xADSGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
    C.J. Grillmair, O. Dionatos, ApJ 643, L17 (2006).  https://doi.org/10.1086/505111ADSGoogle Scholar
  24. 24.
    Gaia Collaboration, T. Prusti, J.H.J. de Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, M. Biermann, D.W. Evans, et al., A&A 595, A1 (2016).  https://doi.org/10.1051/0004-6361/201629272
  25. 25.
    J. Bovy, A. Bahmanyar, T.K. Fritz, N.a. Kallivayalil, GCIP dynamics. Galaxy: struct. 833, 31 (2016).  https://doi.org/10.3847/1538-4357/833/1/31ADSGoogle Scholar
  26. 26.
    J. Bovy, Phys. Rev. Lett. 116(12), 121301 (2016).  https://doi.org/10.1103/PhysRevLett.116.121301
  27. 27.
    D. Erkal, V. Belokurov, MNRAS 454, 3542 (2015).  https://doi.org/10.1093/mnras/stv2122ADSGoogle Scholar
  28. 28.
    S. Pearson, A.M. Price-Whelan, K.V. Johnston, Nat. Astron. 1, 633 (2017).  https://doi.org/10.1038/s41550-017-0220-3ADSGoogle Scholar
  29. 29.
    N.C. Amorisco, F.A. Gómez, S. Vegetti, S.D.M. White, MNRAS 463, L17 (2016).  https://doi.org/10.1093/mnrasl/slw148ADSGoogle Scholar
  30. 30.
    E. Balbinot, M. Gieles, MNRAS 474, 2479 (2018).  https://doi.org/10.1093/mnras/stx2708ADSGoogle Scholar
  31. 31.
    E. D’Onghia, V. Springel, L. Hernquist, D. Keres, ApJ 709, 1138 (2010).  https://doi.org/10.1088/0004-637X/709/2/1138ADSGoogle Scholar
  32. 32.
    T. Sawala, P. Pihajoki, P.H. Johansson, C.S. Frenk, J.F. Navarro, K.A. Oman, S.D.M. White, MNRAS 467, 4383 (2017).  https://doi.org/10.1093/mnras/stx360ADSGoogle Scholar
  33. 33.
    S. Garrison-Kimmel, A. Wetzel, J.S. Bullock, P.F. Hopkins, M. Boylan-Kolchin, C.A. Faucher-Giguère, D. Kereš, E. Quataert, R.E. Sanderson, A.S. Graus, T. Kelley, MNRAS 471, 1709 (2017).  https://doi.org/10.1093/mnras/stx1710ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada

Personalised recommendations