Advertisement

21 cm Absorption as a Probe of Dark Photons

  • Joshua T. RudermanEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Dark radiation could have injected soft photons into the primordial plasma with energies far below the Cosmic Microwave Background (CMB) temperature. Measurements of the low energy tail of the CMB spectrum therefore open a new window into the properties of dark radiation. We present an example model where dark radiation, composed of dark photons, resonantly oscillate into ordinary photons during the cosmic dark ages, enhancing the low energy tail of the CMB. Our scenario can explain the stronger than expected 21 cm absorption observed by the EDGES experiment.

Notes

Acknowledgements

Thanks goes to the organizers and to the Simons Foundation for making this engaging workshop possible. We would also like to thank Maxim Pospelov, Josef Pradler, and Alfredo Urbano for collaborating on the work described in this section. This work is supported by NSF CAREER grant PHY-1554858.

References

  1. 1.
    D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, Astrophys. J. 473, 576 (1996).  https://doi.org/10.1086/178173ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Fixsen et al., Astrophys. J. 734, 5 (2011).  https://doi.org/10.1088/0004-637X/734/1/5ADSCrossRefGoogle Scholar
  3. 3.
    M. Bersanelli, G.F. Smoot, M. Bensadoun, G. de Amici, M. Limon, S. Levin, Astrophys. Lett. Commun. 32, 7 (1995)ADSGoogle Scholar
  4. 4.
    S.T. Staggs, N.C. Jarosik, D.T. Wilkinson, E.J. Wollack, Astrophys. Lett. Commun. 32, 3 (1995)ADSGoogle Scholar
  5. 5.
    M. Pospelov, J. Pradler, J.T. Ruderman, A. Urbano, Phys. Rev. Lett. 121(3), 031103 (2018).  https://doi.org/10.1103/PhysRevLett.121.031103
  6. 6.
    T. Moroi, K. Nakayama, Y. Tang, Phys. Lett. B 783, 301 (2018).  https://doi.org/10.1016/j.physletb.2018.07.002ADSCrossRefGoogle Scholar
  7. 7.
    S. Furlanetto, S.P. Oh, F. Briggs, Phys. Rep. 433, 181 (2006).  https://doi.org/10.1016/j.physrep.2006.08.002ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Pritchard, A. Loeb, Rep. Prog. Phys. 75, 086901 (2012).  https://doi.org/10.1088/0034-4885/75/8/086901ADSCrossRefGoogle Scholar
  9. 9.
    T. Venumadhav, L. Dai, A. Kaurov, M. Zaldarriaga (2018). https://doi.org/10.1103/PhysRevD.98.103513
  10. 10.
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018).  https://doi.org/10.1038/nature25792ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
    A. Berlin, D. Hooper, G. Krnjaic, S.D. McDermott (2018). https://doi.org/10.1103/PhysRevLett.121.011102
  13. 13.
    R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky (2018). https://doi.org/10.1103/PhysRevD.98.103005
  14. 14.
    A. Falkowski, K. Petraki (2018). arXiv:1803.10096
  15. 15.
    C. Feng, G. Holder, Astrophys. J. 858(2), L17 (2018).  https://doi.org/10.3847/2041-8213/aac0feADSCrossRefGoogle Scholar
  16. 16.
    R. Essig, et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, USA, July 29–August 6, 2013. http://inspirehep.net/record/1263039/files/arXiv:1311.0029.pdf
  17. 17.
    K.E. Kunze, M.A. Vazquez-Mozo, JCAP 1512(12), 028 (2015).  https://doi.org/10.1088/1475-7516/2015/12/028ADSCrossRefGoogle Scholar
  18. 18.
    A. Mirizzi, J. Redondo, G. Sigl, JCAP 0903, 026 (2009).  https://doi.org/10.1088/1475-7516/2009/03/026ADSCrossRefGoogle Scholar
  19. 19.
    J. Chluba, Mon. Not. R. Astron. Soc. 454(4), 4182 (2015).  https://doi.org/10.1093/mnras/stv2243ADSCrossRefGoogle Scholar
  20. 20.
    V. Poulin, P.D. Serpico, J. Lesgourgues, JCAP 1608(08), 036 (2016).  https://doi.org/10.1088/1475-7516/2016/08/036ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations