Advertisement

Versatile Physics with Liquid Xenon Dark Matter Detectors

  • Rafael F. LangEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

The much-discussed neutrino floor from atmospheric neutrinos will limit the sensitivity to directly search for WIMP dark matter, but is currently still well beyond our capabilities, namely by three orders of magnitude in rate and two generations in detectors. Liquid xenon-based detectors designed to truly probe WIMPs across this parameter range are sensitive to a wide range of physics channels, ranging from dark matter to neutrino physics and touching particle physics, nuclear physics and astrophysics. This contribution puts the current state of the art into perspective and sketches the science that can be done with current and upcoming liquid xenon detectors.

Keywords

WIMPs Dark matter Xenon XENON1T LZ LBECA Direct detection Solar neutrinos Supernova 

References

  1. 1.
    M. Battaglieri et al., (2017). arXiv:1707.04591
  2. 2.
    J.L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010).  https://doi.org/10.1146/annurev-astro-082708-101659ADSCrossRefGoogle Scholar
  3. 3.
    R.K. Leane, T.R. Slatyer, J.F. Beacom, K.C.Y. Ng, Phys. Rev. D 98(2), 023016 (2018).  https://doi.org/10.1103/PhysRevD.98.023016
  4. 4.
    J. Angle et al., Phys. Rev. Lett. 100, 021303 (2008).  https://doi.org/10.1103/PhysRevLett.100.021303
  5. 5.
    E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012).  https://doi.org/10.1103/PhysRevLett.109.181301
  6. 6.
    D.S. Akerib et al., Phys. Rev. Lett. 112, 091303 (2014).  https://doi.org/10.1103/PhysRevLett.112.091303
  7. 7.
    X. Cui et al., Phys. Rev. Lett. 119(18), 181302 (2017).  https://doi.org/10.1103/PhysRevLett.119.181302
  8. 8.
    E. Aprile et al., Phys. Rev. Lett. 121, 111302 (2018). https://doi.org/10.1103/PhysRevLett.121.111302
  9. 9.
    B.J. Mount et al., (2017). arXiv:1703.09144
  10. 10.
    E. Aprile et al., JCAP 1604(04), 027 (2016).  https://doi.org/10.1088/1475-7516/2016/04/027CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Wikipedia, Large underground xenon experiment. https://en.wikipedia.org/wiki/Large_Underground_Xenon_experiment
  14. 14.
    D. Akimov et al., Science 357(6356), 1123 (2017).  https://doi.org/10.1126/science.aao0990ADSCrossRefGoogle Scholar
  15. 15.
    J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014).  https://doi.org/10.1103/PhysRevD.89.023524
  16. 16.
    D.S. Akerib et al., Phys. Rev. Lett. 116(16), 161302 (2016).  https://doi.org/10.1103/PhysRevLett.116.161302
  17. 17.
  18. 18.
    X. Ren et al., Phys. Rev. Lett. 121(2), 021304 (2018).  https://doi.org/10.1103/PhysRevLett.121.021304
  19. 19.
    E. Aprile et al., Phys. Rev. D 94(9), 092001 (2016).  https://doi.org/10.1103/PhysRevD.94.092001,  https://doi.org/10.1103/PhysRevD.95.059901. [Erratum: Phys. Rev. D 95(5), 059901 2017)]
  20. 20.
    R. Essig, T. Volansky, T.T. Yu, Phys. Rev. D 96(4), 043017 (2017).  https://doi.org/10.1103/PhysRevD.96.043017
  21. 21.
    J. Bramante, B. Broerman, R.F. Lang, N. Raj, Phys. Rev. D 98(8), 083516 (2018). https://doi.org/10.1103/PhysRevD.98.083516
  22. 22.
    M.J. Dolan, F. Kahlhoefer, C. McCabe, Phys. Rev. Lett. 121, 101801 (2018). https://doi.org/10.1103/PhysRevLett.121.101801
  23. 23.
    M. Ibe, W. Nakano, Y. Shoji, K. Suzuki, JHEP 03, 194 (2018).  https://doi.org/10.1007/JHEP03(2018)194
  24. 24.
    D.S. Akerib et al., Phys. Rev. Lett. 118(26), 261301 (2017).  https://doi.org/10.1103/PhysRevLett.118.261301
  25. 25.
    H. An, M. Pospelov, J. Pradler, A. Ritz, Phys. Lett. B 747, 331 (2015).  https://doi.org/10.1016/j.physletb.2015.06.018ADSCrossRefGoogle Scholar
  26. 26.
    E. Aprile et al., Phys. Rev. D 90(6), 062009 (2014).  https://doi.org/10.1103/PhysRevD.90.062009,  https://doi.org/10.1103/PhysRevD.95.029904. [Erratum: Phys. Rev. D 95(2), 029904 (2017)]
  27. 27.
    E. Aprile et al., Science 349(6250), 851 (2015).  https://doi.org/10.1126/science.aab2069ADSCrossRefGoogle Scholar
  28. 28.
    E. Aprile et al., Phys. Rev. D 96(12), 122002 (2017).  https://doi.org/10.1103/PhysRevD.96.122002
  29. 29.
    J.D. Clarke, R. Foot, Phys. Lett. B 766, 29 (2017).  https://doi.org/10.1016/j.physletb.2016.12.047ADSCrossRefGoogle Scholar
  30. 30.
    E. Aprile et al., Phys. Rev. D 96(2), 022008 (2017).  https://doi.org/10.1103/PhysRevD.96.022008
  31. 31.
    R. Harnik, J. Kopp, P.A.N. Machado, JCAP 1207, 026 (2012).  https://doi.org/10.1088/1475-7516/2012/07/026CrossRefGoogle Scholar
  32. 32.
    R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Phys. Rev. D 94(10), 103009 (2016).  https://doi.org/10.1103/PhysRevD.94.103009
  33. 33.
    K. Abe et al., PTEP 2018(5), 053D03 (2018).  https://doi.org/10.1093/ptep/pty053
  34. 34.
    J. Angle et al., Phys. Rev. Lett. 107, 051301 (2011).  https://doi.org/10.1103/PhysRevLett.110.249901,  https://doi.org/10.1103/PhysRevLett.107.051301. [Erratum: Phys. Rev. Lett. 110, 249901 (2013)]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations