Advertisement

Calibration of Population Growth Mathematical Models by Using Time Series

  • Francisco Novoa-MuñozEmail author
  • Sergio Contreras Espinoza
  • Aníbal Coronel Pérez
  • Ian Hess Duque
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 301)

Abstract

In this paper, we study the problem of coefficients identification in population growth models. We consider that the dynamics of the population is described by a system of ordinary differential equations of susceptible-infective-recovered (SIR) type, and we assume that we have a discrete observation of infective population. We construct a continuous observation by applying time series and an appropriate fitting to the discrete observation data. The identification problem consists in the determination of different parameters in the governing equations such that the infective population obtained as solution of the SIR system is as close as to the observation. We introduce a reformulation of the calibration problem as an optimization problem where the objective function and the restriction are given by the comparison in the \(L_2\)-norm of theoretical solution of the mathematical model and the observation, and the SIR system governing the phenomenon, respectively. We solve numerically the optimization problem by applying the gradient method where the gradient of the cost function is obtained by introducing an adjoint state. In addition, we consider a numerical example to illustrate the application of the proposed calibration method.

Keywords

Calibration Inverse problems Time series SIR models 

Notes

Acknowledgements

We thank to research projects DIUBB 172409 GI/C and FAPEI at U. del Bío-Bío, Chile. AC thanks to the research project DIUBB 183309 4/R at U. del Bío-Bío, Chile. IH thanks to the program “Becas de doctorado” of Conicyt-Chile. Ian Hess and Francisco Novoa-Muñoz would thank the support of the program “Fortalecimiento del postgrado” of the project “Instalación del Plan Plurianual UBB 2016–2020”

References

  1. 1.
    Akmatov, M.K., Kretzschmar, M., Krämer, A., Mikolajczyk, R.T.: Timeliness of vaccination and its effects on fraction of vaccinated population. Vaccine 26(31), 3805–3811 (2008)CrossRefGoogle Scholar
  2. 2.
    Alvarez, F., Cabot, M.: Steepest descent with curvature dynamical system. J. Optim. Theory Appl. 120, 247–273 (2004).  https://doi.org/10.1023/B:JOTA.0000015684.50827.49MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bai, Z., Zhou, Y.: Existence of two periodic solutions for a non-autonomous \(SIR\) epidemic model. Appl. Math. Model. 35, 382–391 (2011).  https://doi.org/10.1016/j.apm.2010.07.002MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barriga, G., Hernández, E.: Aspectos actuales de las infecciones emergentes y reemergentes. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio 62(3), 174–182 (2015)Google Scholar
  5. 5.
    Bauch, C., Earn, D.: Interepidemic intervals in forced and unforced SEIR models. In: Ruan, S., Wolkowicz, G.S., Wu, J. (eds.) Dynamical Systems and Their Applications in Biology. American Mathematical Society, New York (2003)Google Scholar
  6. 6.
    Bhopal, R.S.: Concepts of Epidemiology: Integrating the Ideas, Theories, Principles, and Methods of Epidemiology. Oxford University Press, Oxford (2016)Google Scholar
  7. 7.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis. Forecasting and Control, 5th edn. Wiley, Hoboken (2016)zbMATHGoogle Scholar
  8. 8.
    Bürger, R., Coronel, A., Sepúlveda, M.: Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation, hyperbolic problems: theory, numerics and applications. Proc. Symp. Appl. Math. 67, 445–454 (2009)CrossRefGoogle Scholar
  9. 9.
    Cauchemez, S., Ferguson, N.M.: Likelihood based estimation of continuous time epidemic models from timeseries data: application to measles transmission in London. J. R. Soc. Interface 5(25), 885–897 (2008)CrossRefGoogle Scholar
  10. 10.
    Coronel, A., James, F., Sepúlveda, M.: Numerical identification of parameters for a model of sedimentation processes. Inverse Probl. 19(4), 951–972 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dayan, G.H., Shaw, K.M., Baughman, A.L., Orellana, L.C., Forlenza, R., Ellis, A., Chaui, J., Kaplan, S., Strebel, P.: Assessment of delay in age-appropriate vaccination using survival analysis. Am. J. Epidemiol. 163(6), 561–570 (2006)CrossRefGoogle Scholar
  12. 12.
    Detels, R.: Epidemiology: the foundation of public health. Oxford Textbook of Global Public Health, 5th edn. (2015).  https://doi.org/10.1093/med/9780199661756.001.0001Google Scholar
  13. 13.
    Diekmann, O., Heesterbeek, J.A.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)zbMATHGoogle Scholar
  14. 14.
    Engl, H.W., Flamm, C., Kügler, P., Lu, J., Müller, S., Schuster, P.: Inverse problems in systems biology. Inverse Probl. 25, 1–51 (2009).  https://doi.org/10.1088/0266-5611/25/12/123014MathSciNetCrossRefGoogle Scholar
  15. 15.
    Estrella, E.: Consecuencias epidemiológicas de la conquista de América. MS. Dpto. de Humanidades Médicas, Facultad de Medicina, Universidad Central de Quito, Ecuador (2002)Google Scholar
  16. 16.
    Frasso, G., Lambert, P.: Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone. Biostatistics 17(4), 779–792 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gibson, G.J., Renshaw, E.: Estimating parameters in stochastic compartmental models using Markov chain methods. Math. Med. Biol.: J. IMA 15(1), 19–40 (1998)CrossRefGoogle Scholar
  18. 18.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM 42, 599–653 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Last, J.M., Abramson, J.H., Freidman, G.D.: A Dictionary of Epidemiology, 6th edn. Oxford University Press, New York (2014)Google Scholar
  20. 20.
    Lekone, P.E., Finkenstädt, B.F.: Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4), 1170–1177 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Marinova, T.T., Marinova, R.S., Omojola, J., Jackson, M.: Inverse problem for coefficient identification in SIR epidemic models. Comput. Math. Appl. 67, 2218–2227 (2014).  https://doi.org/10.1016/j.camwa.2014.02.002MathSciNetCrossRefGoogle Scholar
  22. 22.
    McKinley, T.J., Ross, J.V., Deardon, R., Cook, A.R.: Simulation based Bayesian inference for epidemic models. Comput. Stat. Data Anal. 71, 434–447 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mohammadbeigi, A., Mokhtari, M., Zahraei, S.M., Eshrati, B., Rejali, M.: Survival analysis for predictive factors of delay vaccination in Iranian children. Int. J. Prev. Med. 6(1), 119–123 (2015).  https://doi.org/10.4103/2008-7802.170868CrossRefGoogle Scholar
  24. 24.
    Norrie, P.: A History of Disease in Ancient Times: More Lethal than War. Springer, Berlin (2016)CrossRefGoogle Scholar
  25. 25.
    Panagiotakopulu, E.: Pharaonic Egypt and the origins of plague. J. Biogeogr. 31(2), 269–275 (2004).  https://doi.org/10.1046/j.0305-0270.2003.01009.xCrossRefGoogle Scholar
  26. 26.
    Pesco, P.: Modelos estocásticos para epidemias recurrentes. Tesis doctoral, La Plata, Argentina (2017)Google Scholar
  27. 27.
    Rhodes, A., Allman, E.S.: Mathematical Models in Biology: An Introduction. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  28. 28.
    R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018). http://www.R-project.org
  29. 29.
    Streftaris, G., Gibson, G.J.: Statistical inference for stochastic epidemic models. In: Proceedings of the 17th International Workshop on Statistical Modeling, pp. 609–616 (2002)Google Scholar
  30. 30.
    Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)Google Scholar
  31. 31.
    Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291, 775–793 (2004).  https://doi.org/10.1016/j.jmaa.2003.11.043MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wu, L., Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differ. Equ. 168, 150–167 (2000).  https://doi.org/10.1006/jdeq.2000.3882MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xu, X., Kypraios, T., O’neill, P.D.: Bayesian nonparametric inference for stochastic epidemic models using Gaussian processes. Biostatistics 17(4), 619–633 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zietz, B.P., Dunkelberg, H.: The history of the plague and the research on the causative agent Yersinia pestis. Int. J. Hyg. Environ. Health 207(2), 165–178 (2004).  https://doi.org/10.1078/1438-4639-00259CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco Novoa-Muñoz
    • 1
    Email author
  • Sergio Contreras Espinoza
    • 1
  • Aníbal Coronel Pérez
    • 2
  • Ian Hess Duque
    • 2
  1. 1.GMA, Departamento de Estadística, Facultad de CienciasUniversidad del Bío-BíoConcepciónChile
  2. 2.GMA, Departamento de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-BíoChillánChile

Personalised recommendations