Porosity and Diffusion in Biological Tissues. Recent Advances and Further Perspectives

  • Raimondo PentaEmail author
  • Laura Miller
  • Alfio Grillo
  • Ariel Ramírez-Torres
  • Pietro Mascheroni
  • Reinaldo Rodríguez-Ramos
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 262)


We present a review of porosity and diffusion in biological tissues from different perspectives. We first introduce the topic by illustrating experimental evidence related to diffusion in porous media and review a number of state of the art experimental techniques. We then proceed by providing a revisited derivation of the equations of poroelasticity from the microstructure (via asymptotic homogenization), which is especially aimed at giving a first insight on the topic to both students and scientists who are not familiar with the subject. Results based on this kind of models have only recently been presented in the literature and could possibly complement the experiments by getting a more thorough understanding on the complex interplay between porosity and diffusion. We investigate further the matter by exploring the role of diffusion in driving growth and stresses in the context of linear elastic modeling for tumors and cellular automata. We finally conclude the chapter by (a) discussing diffusion in nonlinear, “active” materials, i.e., those which are possibly characterized by growth and remodeling, and (b) offering an overview on cutting edge research problems on diffusion for this class of complex materials.



LM is funded by EPSRC with project number EP/N509668/1. ART and AG acknowledge the Dipartimento di Scienze Matematiche (DISMA) “G.L. Lagrange” of the Politecnico di Torino, Dipartimento di Eccellenza 2018–2022 (Department of Excellence 2018–2022, Project code: E11G18000350001). PM is supported by MicMode-I2T (01ZX1710B) from the German Federal Ministry of Education and Research (BMBF).


  1. 1.
    Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, Jain RK (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10:203–207CrossRefGoogle Scholar
  2. 2.
    Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olbering JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–883MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. Z Angew Math Phys 61:177–191MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Antoine EE, Vlachos PP, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE 10:e0122500CrossRefGoogle Scholar
  5. 5.
    Atanacković TM, Pilipović S, Stanković B, Zorica D (2014) Fractional calculus with applications in mechanics – vibrations and diffusion processes. Wiley, GBzbMATHCrossRefGoogle Scholar
  6. 6.
    Atanacković TM, Pilipović S, Stanković B, Zorica D (2014) Fractional calculus with applications in mechanics – wave propagation, impact and variational principles. Wiley, LondonzbMATHCrossRefGoogle Scholar
  7. 7.
    Atanacković TM, Stanković B (2009) Generalized wave equation in nonlocal elasticity. Acta Mech 208:1–10zbMATHCrossRefGoogle Scholar
  8. 8.
    Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6:423–445CrossRefGoogle Scholar
  9. 9.
    Ateshian GA, Humphrey J (2012) Continuum mixture models of biological growth and remodeling: past successes and future opportunities. Ann Rev Biomed Eng 14:97–111CrossRefGoogle Scholar
  10. 10.
    Ateshian GA, Weiss JA (2010) Anisotropic hydraulic permeability under finite deformation. J Biomech Eng 132, 111004-1—111004-7Google Scholar
  11. 11.
    Auriault J-L, Boutin C, Geindreau C (2010) Homogenization of coupled phenomena in heterogeneous media. Wiley, LondonGoogle Scholar
  12. 12.
    Baaijens F, Bouten C, Driessen N (2010) Modeling cartilage remodeling. J Biomech 43:166–175CrossRefGoogle Scholar
  13. 13.
    Bakhvalov NS, Panasenko G (2012) Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Kluwer, DordrechtzbMATHGoogle Scholar
  14. 14.
    Bear J, Fel LG, Zimmels Y (2010) Effects of material symmetry on the coefficients of transport in anisotropic porous media. Transp Porous Med 82:347–361CrossRefGoogle Scholar
  15. 15.
    Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci 76:1274–1278CrossRefGoogle Scholar
  16. 16.
    Bennethum LS, Murad MA, Cushman JH (2000) Macroscale thermodynamics and the chemical potential for swelling porous media. Transp Porous Med 39:187–225MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bensoussan A, Lions J-L, Papanicolaou G (2011) Asymptotic analysis for periodic structures. American Mathematical Society Chelsea Publishing, Providence RIzbMATHGoogle Scholar
  18. 18.
    Bi X, Li G, Doty SB, Camacho NP (2005) A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13:1050–1058CrossRefGoogle Scholar
  19. 19.
    Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23:91–96MathSciNetzbMATHGoogle Scholar
  21. 21.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range. J Acoust Soc Am 28, 179–191MathSciNetCrossRefGoogle Scholar
  22. 22.
    Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bottaro A, Ansaldi T (2012) On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium. J Biomech Eng 134:084501CrossRefGoogle Scholar
  24. 24.
    Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146zbMATHCrossRefGoogle Scholar
  25. 25.
    Byrne HM, Chaplain MA (1995) Growth of nonnecrotic tumors in the presence of absence of inhibitors. Math Biosci 130:151–181zbMATHCrossRefGoogle Scholar
  26. 26.
    Bynre HM, Drasdo D (2009) Individual-based and continuum models of growing cell populations. J Math Biol 58:657–687MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Carfagna M, Grillo A (2017) The spherical design algorithm in the numerical simulation of biological tissues with statistical fiber-reinforcement. Comput Visual Sci 18:157–184zbMATHCrossRefGoogle Scholar
  28. 28.
    Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity. Eur Phys J Spec Top 193:193–204zbMATHCrossRefGoogle Scholar
  29. 29.
    Casciari JJ, Sotirchos SV, Sutherland RM (1992) Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physio 151:386–394CrossRefGoogle Scholar
  30. 30.
    Cermelli P, Fried E, Sellers S (2001) Configurational stress, yield and flow in rate-independent plasticity. Proc R Soc A 457:1447–1467MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Chalasani R, Poole-Warren L, Conway RM, Ben-Nissan B (2007) Porous orbital implants in enucleation: a systematic review. Surv. Ophthalmol. 52:145–155CrossRefGoogle Scholar
  32. 32.
    Challamel N, Zorica D, Atanacković TM, Spasić DT (2013) On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C R Mec 341:298–303CrossRefGoogle Scholar
  33. 33.
    Cheng AH-D (2016) Poroelasticity. Springer, SwitzerlandzbMATHCrossRefGoogle Scholar
  34. 34.
    Cowin SC (1999) Bone poroelasticity. J Biomech 32:217–238CrossRefGoogle Scholar
  35. 35.
    Cowin SC (2000) How is a tissue built? J Biomech Eng 122:553–569CrossRefGoogle Scholar
  36. 36.
    Crevacore E, Di Stefano S, Grillo A (2019) Coupling among deformation, fluid flow, structural reorganisation and fiber reorientation in fiber-reinforced, transversely isotropic biological tissues. Int J Non-Linear Mech 111:1–13CrossRefGoogle Scholar
  37. 37.
    Cyron C, Humphrey J (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52:645–664MathSciNetCrossRefGoogle Scholar
  38. 38.
    Dalwadi MP, Griffiths IM, Bruna M (2015) Understanding how porosity gradients can make a better filter using homogenization theory. Proc R Soc A 471:20150464MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Davit Y, Bell CG, Byrne HM, Chapman LA, Kimpton LS, Lang GE, Leonard KH, Oliver JM, Pearson NC, Shipley RJ et al (2013) Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare? Adv Water Resour 62:178–206CrossRefGoogle Scholar
  40. 40.
    Dehghani H, Penta R, Merodio J (2018) The role of porosity and solid matrix compressibility on the mechanical behavior of poroelastic tissues. Mater Res Exp 6:035404CrossRefGoogle Scholar
  41. 41.
    Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkh’auser, BaselGoogle Scholar
  42. 42.
    DiCarlo A, Quiligotti S (2002) Growth and balance. Mech Res Commun 29:449–456MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Di Domenico CD, Lintz M, Bonassar LJ (2018) Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 14:393–403CrossRefGoogle Scholar
  44. 44.
    Di Paola M, Zingales M (2008) Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int J Solids Struct 45:5642–5659zbMATHCrossRefGoogle Scholar
  45. 45.
    Di Stefano S, Ramírez-Torres A, Penta R, Grillo A (2018) Self-influenced growth through evolving material inhomogeneities. Int J Non-Linear Mech 106:174–187CrossRefGoogle Scholar
  46. 46.
    Di Stefano S, Carfagna M, Knodel MM, Kotaybah H, Federico S, Grillo A (2019) Anelastic reorganisation of fiber-reinforced biological tissues. Comput Visual Sci in press. Scholar
  47. 47.
    Driessen N, Wilson W, Bouten C, Baaijens F (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theoret Biol 226:53–64CrossRefGoogle Scholar
  48. 48.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  49. 49.
    Epstein M, Maugin GA (1996) On the geometrical material structure of anelasticity. Acta Mech 115:119–131MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plasticity 16:951–978zbMATHCrossRefGoogle Scholar
  51. 51.
    Erikson A, Andersen HN, Naess SN, Sikorski P, De Lange Davies C (2008) Physical and chemical modifications of collagen gels: impact on diffusion. Biopolymers 89:135–143CrossRefGoogle Scholar
  52. 52.
    Estrada-Rodriguez G, Gimperlein H, Painter KJ (2017) Fractional Patlak-Keller-Segel equations for chemotactic superdiffusion. SIAM J Appl Math 78:1155–1173MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Evans RC, Quinn TM (2005) Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage. Arch Biochem Biophys 442:1–10CrossRefGoogle Scholar
  54. 54.
    Federico S (2012) Covariant formulation of the tensor algebra of non-linear elasticity. Int J Non-Linear Mech 47:273–284CrossRefGoogle Scholar
  55. 55.
    Federico S, Gasser TC (2010) Nonlinear elasticity of biological tissues with statistical fiber orientation. J R Soc Interface 7:955–966CrossRefGoogle Scholar
  56. 56.
    Federico S, Grillo A (2012) Elasticity and permeability of porous fiber-reinforced materials under large deformations. Mech Mater 44:58–71CrossRefGoogle Scholar
  57. 57.
    Federico S, Herzog W (2008) On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol 77:367–378CrossRefGoogle Scholar
  58. 58.
    Federico S, Herzog W (2008) On the permeability of fiber-reinforced porous materials. Int J Solids Struct 45:2160–2172zbMATHCrossRefGoogle Scholar
  59. 59.
    Fel L, Bear J (2010) Dispersion and dispersivity tensors in saturated porous media with uniaxial symmetry. Transp Porous Med 85:259–268MathSciNetCrossRefGoogle Scholar
  60. 60.
    Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New YorkzbMATHCrossRefGoogle Scholar
  61. 61.
    Garikipati K, Arruda E, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissues: the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595–1625MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Giverso C, Scianna M, Grillo A (2015) Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations. Mech Res Commun 68:31–39CrossRefGoogle Scholar
  63. 63.
    Goriely A (2016) The mathematics and mechanics of biological growth. Springer, New YorkzbMATHGoogle Scholar
  64. 64.
    Grillo A, Carfagna M, Federico S (2017) Non-darcian flow in fiber-reinforced biological tissues. Meccanica 52:3299–3320MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Grillo A, Carfagna M, Federico S (2018) An Allen-Cahn approach to the remodelling of fiber-reinforced anisotropic materials. J Eng Math 109:139–172zbMATHCrossRefGoogle Scholar
  66. 66.
    Grillo A, Federico S, Wittum G (2012) Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int J Non-Linear Mech 47:388–401CrossRefGoogle Scholar
  67. 67.
    Guinot V (2002) Modelling using stochastic, finite state cellular automata: rule inference from continuum models. Appl Math Model 26:701–714zbMATHCrossRefGoogle Scholar
  68. 68.
    Hak S, Reitan NK, Haraldseth O, De Lange Davies C (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13:113–130CrossRefGoogle Scholar
  69. 69.
    Hardin RH, Sloane NJH (1996) McLaren’s improved Snub cube and other new spherical designs in three dimensions. Discrete Comput Geom 15:429–441MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6:163–175CrossRefGoogle Scholar
  71. 71.
    Hassanizadeh SM (1986) Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy’s and Fick’s laws. Adv Water Resour 9, 208–222Google Scholar
  72. 72.
    Hassanizadeh SM, Leijnse A (1995) A non-linear theory of high-concentration-gradient dispersion in porous media. Adv Water Resour 18:203–215CrossRefGoogle Scholar
  73. 73.
    Holmes MH, Mow VC (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23:1145–1156CrossRefGoogle Scholar
  74. 74.
    Holmes MH (2012) Introduction to perturbation methods. Springer, New YorkGoogle Scholar
  75. 75.
    Hori M, Nemat-Nasser S (1999) On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mech Mater 31:667–682CrossRefGoogle Scholar
  76. 76.
    Interian R, Rodríguez-Ramos R, Valdés-Ravelo F, Ramírez-Torres A, Ribeiro CC, Conci A (2017) Tumor growth modeling by cellular automata. Math Mech Complex Syst 5:239–259MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Jain RK (1987) Transport of molecules in the tumor interstitium: A review. Cancer Res. 47:3039–3051Google Scholar
  78. 78.
    Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814s–819sGoogle Scholar
  79. 79.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664CrossRefGoogle Scholar
  80. 80.
    Jacob JT, Burgoyne CF, McKinnon SJ, Tanji TM, LaFleur PK, Duzman E (1998) Biocompatibility response to modified baerveldt glaucoma drains. J Biomed Mater Res 43:99–107CrossRefGoogle Scholar
  81. 81.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  82. 82.
    Kihara T, Ito J, Miyake J (2013) Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS ONE 8:e82382CrossRefGoogle Scholar
  83. 83.
    Kröner E (1959) Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch Ration Mech Anal 4:273–334MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Landau LD, Lifshitz EM (1987) Fluid mechanics. In: Revised—Translated by Sykes, JB, Reid, WH (eds) Course of theoretical physics, second english edition, vol 6. Pergamon Press, Oxford, FrankfurtGoogle Scholar
  85. 85.
    Lanza R, Langer R, Vacanti JP (2011) Principles of tissue engineering. Academic, LondonGoogle Scholar
  86. 86.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502CrossRefGoogle Scholar
  87. 87.
    Loret B, Simões FMF (2005) A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur J Mech A/Solids 24:757–781MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Loret B, Simões FMF (2017) Biomechanical aspects of soft tissues. CRC Press, Boca RatonCrossRefGoogle Scholar
  89. 89.
    Maroudas A (1970) Distribution and diffusion of solutes in articular cartilage. Biophys J 10:365–379CrossRefGoogle Scholar
  90. 90.
    Mascheroni P, Penta R (2017) The role of the microvascular network structure on diffusion and consumption of anticancer drugs. Int J Num Meth Biomed Eng 33:e2857MathSciNetCrossRefGoogle Scholar
  91. 91.
    Mascheroni P, Carfagna M, Grillo A, Boso D, Schrefler B (2018) An avascular tumor growth model based on porous media mechanics and evolving natural states. Math Mech Solids 23:686–712MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Maugin GA, Epstein M (1998) Geometrical material structure of elastoplasticity. Int J Plast 14:109–115zbMATHCrossRefGoogle Scholar
  93. 93.
    Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  94. 94.
    Meerschaert MM, Mortensen J, Wheatcraft SW (2014) Fractional vector calculus for fractional advection-diffusion. Phys A 367:181–190CrossRefGoogle Scholar
  95. 95.
    Mei CC, Vernescu B (2010) Homogenization methods for multiscale mechanics. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  96. 96.
    Menzel A (2005) Modelling of anisotropic growth in biological tissues – a new approach and computational aspects. Biomech Model Mechanobiol 3:147–171CrossRefGoogle Scholar
  97. 97.
    Meyvis TK, De Smedt SC, Van Oostveldt P, Demeester J (1999) Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm Res 16:1153–1162CrossRefGoogle Scholar
  98. 98.
    Mićunović MV (2009) Thermomechanics of viscoplasticity-fundamentals and applications. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
  99. 99.
    Minozzi M, Nardinocchi P, Teresi L, Varano V (2017) Growth-induced compatible strains. Math Mech Solids 22:62–71MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Moreno-Arotzena O, Meier JG, Del Amo C, García-Aznar JM (2015) Characterization of fibrin and collagen gels for engineering wound healing models. Materials 8:1636–1651CrossRefGoogle Scholar
  101. 101.
    Mueller-Klieser WF, Freyer JP, Sutherland RM (1986) Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br J Cancer 53:345–353CrossRefGoogle Scholar
  102. 102.
    Mueller-Klieser WF, Sutherland RM (1982) Oxygen tensions in multicell spheroids of two cell lines. Br J Cancer 45:256–264CrossRefGoogle Scholar
  103. 103.
    Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503Google Scholar
  104. 104.
    Ngwa M, Agyingi E (2012) Effect of an external medium on tumor growth-induced stress. IAENG Int J Appl Math 42:229–236MathSciNetGoogle Scholar
  105. 105.
    Nimer E, Schneiderman R, Maroudas A (2003) Diffusion and partition of solutes in cartilage under static load. Biophys Chem 106:125–146CrossRefGoogle Scholar
  106. 106.
    Olsson T, Klarbring A (2008) Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur J Mech A/Solids 27:959–974MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Penta R, Ambrosi D, Quarteroni A (2015) Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math Model Methods Appl Sci 25:79–108MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Penta R, Ambrosi D, Shipley R (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67:69–91MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Penta R, Gerisch A (2017) The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Contin Mech Thermodyn 29:187–206MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Penta R, Gerisch A (2017) An introduction to asymptotic homogenization. In: Gerisch A, Penta R, Lang J (eds) Multiscale models in mechano and tumor biology. Springer, Cham, pp 1–26zbMATHGoogle Scholar
  111. 111.
    Penta R, Merodio J (2017) Homogenized modeling for vascularized poroelastic materials. Meccanica 52:3321–3343MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, Di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors. Proc Natl Acad Sci 98, 4628–4633CrossRefGoogle Scholar
  113. 113.
    Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J 77:542–552CrossRefGoogle Scholar
  114. 114.
    Podlubny I (1999) Fractional differential equations. Academic, New YorkzbMATHGoogle Scholar
  115. 115.
    Preziosi L, Vitale G (2011) A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math Models Meth Appl Sci 21:1901–1932MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Quiligotti S, Maugin GA, dell’Isola F (2003) An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech 160:45–60zbMATHCrossRefGoogle Scholar
  117. 117.
    Quinn TM, Kocian P, Meister JJ (2000) Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch Biochem Biophys 384:327–334CrossRefGoogle Scholar
  118. 118.
    Ramanujan S, Pluen A, Mckee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor Interstitium. Biophys J 83:1650–1660CrossRefGoogle Scholar
  119. 119.
    Ramírez-Torres A, Di Stefano S, Grillo A, Rodríguez-Ramos R, Merodio J, Penta R (2018) An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int J Non-Linear Mech 106:245–257CrossRefGoogle Scholar
  120. 120.
    Ramírez-Torres A, Valdés-Ravelo F, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz R, Sabina FJ (2016) Modeling avascular tumor growth via linear elasticity. In: Floryan JM (ed) Proceedings of the 24th international congress of theoretical and applied mechanics, ICTAM2016, MontrealGoogle Scholar
  121. 121.
    Rodriguez E, Hoger A, McCullogh A (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467CrossRefGoogle Scholar
  122. 122.
    Sadik S, Yavari A (2017) On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math Mech Solids 22:771–772MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, SwitzerlandzbMATHGoogle Scholar
  124. 124.
    Sapora A, Cornetti P, Chiaia B, Lenzi EK, Evangelista LR (2017) Nonlocal diffusion in porous media: a spatial fractional approach. J Eng Mech 143, D4016007-1—D4016007-7Google Scholar
  125. 125.
    Shoga JS, Graham BT, Wang L, Price C (2017) Direct quantification of solute diffusivity in agarose and articular cartilage using correlation spectroscopy. Ann Biomed Eng 45:2461–2474CrossRefGoogle Scholar
  126. 126.
    Suhaimi H, Wang S, Thornton T, Das B (2015) On glucose diffusivity of tissue engineering membranes and scaffolds. Chem Eng Sci 126:244–256CrossRefGoogle Scholar
  127. 127.
    Suhaimi H, Das DB (2016) Glucose diffusion in tissue engineering membranes and scaffolds. Rev Chem Eng 32:629–650CrossRefGoogle Scholar
  128. 128.
    Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–595CrossRefGoogle Scholar
  129. 129.
    Taffetani M, de Falco C, Penta R, Ambrosi D, Ciarletta P (2014) Biomechanical modelling in nanomedicine: multiscale approaches and future challenges. Arch. Appl. Mech. 84:1627–1645CrossRefGoogle Scholar
  130. 130.
    Tarasov VE (2008) Fractional vector calculus and fractional Maxwell’s equations. Ann Phys 323:2756–2778MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Tomic A, Grillo A, Federico S (2014) Poroelastic materials reinforced by statistically oriented fibers–numerical implementation and application to articular cartilage. IMA J Appl Math 79:1027–1059MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Valdés-Ravelo F, Ramírez-Torres A, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz R, Merodio J, Penta R, Conci A, Sabina FJ, García-Reimbert C (2018) Mathematical modeling of the interplay between stress and anisotropic growth of avascular tumors. J Mech Med Biol 18, 1850006–1–1850006–28zbMATHCrossRefGoogle Scholar
  133. 133.
    Wang HF (2017) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. University Press, PrincetonGoogle Scholar
  134. 134.
    Wilson W, Driessen N, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil 14:1196–1202CrossRefGoogle Scholar
  135. 135.
    Zingales M (2014) Fractional order theory of heat transport in rigid bodies. Commun Nonlinear Sci Numer Simul 19:3938–3953MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raimondo Penta
    • 1
    Email author
  • Laura Miller
    • 1
  • Alfio Grillo
    • 2
  • Ariel Ramírez-Torres
    • 2
  • Pietro Mascheroni
    • 3
  • Reinaldo Rodríguez-Ramos
    • 4
  1. 1.School of Mathematics and Statistics, Mathematics and Statistics BuildingUniversity of Glasgow, University PlaceGlasgowUK
  2. 2.Dipartimento di Scienze Matematiche “G. L. Lagrange”Politecnico di TorinoTurinItaly
  3. 3.Braunschweig Integrated Centre of Systems Biology (BRICS)Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
  4. 4.Departamento de Matemáticas, Facultad de Matemática y ComputaciónUniversidad de La HabanaHavanaCuba

Personalised recommendations