Advertisement

Case Study on Certifying Distributed Algorithms: Reducing Intrusiveness

  • Samira AkiliEmail author
  • Kim Völlinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11761)

Abstract

Certifying distributed algorithms (CDAs) are a runtime verification method for distributed systems. A CDA computes additionally a witness to an input-output pair – a correctness argument for the pair. The witness is verified at runtime by a distributed checker algorithm. In this paper, we apply CDAs to an industrial case study of collaborative transport robots serving machines in a factory. In particular, we present a certifying variant of a distributed bidding algorithm executed by the robots to assign transport jobs amongst each other. Furthermore, we introduce overlays in order to organize the communication of the distributed checker, and compare them regarding their intrusiveness.

References

  1. 1.
  2. 2.
    Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75632-5_6CrossRefGoogle Scholar
  3. 3.
    Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7(2), 72–93 (2005)CrossRefGoogle Scholar
  4. 4.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)zbMATHGoogle Scholar
  5. 5.
    McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. 5, 119–161 (2011)CrossRefGoogle Scholar
  6. 6.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefGoogle Scholar
  7. 7.
    Völlinger, K.: Verifying the output of a distributed algorithm using certification. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 424–430. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67531-2_29CrossRefGoogle Scholar
  8. 8.
    Völlinger, K., Akili, S.: Verifying a class of certifying distributed programs. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 373–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57288-8_27CrossRefGoogle Scholar
  9. 9.
    Völlinger, K., Akili, S.: On a verification framework for certifying distributed algorithms: distributed checking and consistency. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp. 161–180. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92612-4_9CrossRefGoogle Scholar
  10. 10.
    Völlinger, K., Reisig, W.: Certification of distributed algorithms solving problems with optimal substructure. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 190–195. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22969-0_14CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Humboldt University of BerlinBerlinGermany

Personalised recommendations