A Formal Model to Integrate Behavioral and Structural Adaptations in Self-adaptive Systems

  • Narges KhakpourEmail author
  • Jetty Kleijn
  • Marjan Sirjani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11761)


An approach for modelling adaptive complex systems should be flexible and scalable to allow a system to grow easily, and should have a formal foundation to guarantee the correctness of the system behavior. In this paper, we present the architecture, and formal syntax and semantics of HPobSAM which is a model for specifying behavioral and structural adaptations to model large-scale systems and address re-usability concerns. Self-adaptive modules are used as the building blocks to structure a system, and policies are used as the mechanism to perform both behavioral and structural adaptations. While a self-adaptive module is autonomous to achieve its local goals by collaborating with other self-adaptive modules, it is controlled by a higher-level entity to prevent undesirable behavior. HPobSAM is formalized using a combination of algebraic, graph transformation-based and actor-based formalisms.



We thank the anonymous reviewers for their helpful comments that improved the paper.


  1. 1.
    Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops for self-adaptation. In: 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18–19, 2015, pp. 13–23 (2015)Google Scholar
  2. 2.
    Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-adaptive systems with decentralized control. TAAS 11(4), 25:1–25:35 (2017)CrossRefGoogle Scholar
  3. 3.
    Bagheri, M., et al.: Coordinated actors for reliable self-adaptive systems. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 241–259. Springer, Cham (2017). Scholar
  4. 4.
    Bagheri, M., et al.: Coordinated actor model of self-adaptive track-based traffic control systems. J. Syst. Softw. 143, 116–139 (2018)CrossRefGoogle Scholar
  5. 5.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006)CrossRefGoogle Scholar
  6. 6.
    Becker, B., Giese, H.: Modeling of correct self-adaptive systems: a graph transformation system based approach. In: Proceedings of the 5th International Conference on Soft Computing as Trans Disciplinary Science and Technology, pp. 508–516 (2008)Google Scholar
  7. 7.
    Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in dynamic software architecture specifications. In: Proceedings of 1st ACM SIGSOFT Workshop on Self-managed Systems, pp. 28–33. ACM (2004)Google Scholar
  8. 8.
    Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for structural reconfiguration of components under behavioural adaptation. Electr. Notes Theor. Comput. Sci. 263, 95–110 (2010)CrossRefGoogle Scholar
  9. 9.
    Deiters, C., et al.: Demsy - a scenario for an integrated demonstrator in a smart city. Technical report, NTH - Niedersachsische Technische Hochschule (2010)Google Scholar
  10. 10.
    Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Comput. Syst. Sci. 64(2), 249–283 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. MTCSAES. Springer, Heidelberg (2006). Scholar
  12. 12.
    El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 118–136. Springer, Cham (2018). Scholar
  13. 13.
    Khakpour, N., Jalili, S., Sirjani, M., Goltz, U., Abolhasanzadeh, B.: Hpobsam for modeling and analyzing it ecosystems - through a case study. J. Syst. Softw. 85(12), 2770–2784 (2012)CrossRefGoogle Scholar
  14. 14.
    Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.R.: Pobsam: policy-based managing of actors in self-adaptive systems. Electr. Notes Theor. Comput. Sci. 263, 129–143 (2010)CrossRefGoogle Scholar
  15. 15.
    Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling of evolving adaptive systems. Sci. Comput. Program. 78, 3–26 (2012)CrossRefGoogle Scholar
  16. 16.
    Khakpour, N., Sirjani, M., Goltz, U.: Context-based behavioral equivalence of components in self-adaptive systems. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 16–32. Springer, Heidelberg (2011). Scholar
  17. 17.
    Lee, E.A., Sirjani, M.: What good are models? In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 3–31. Springer, Cham (2018). Scholar
  18. 18.
    J. Magee, J. Kramer: Dynamic structure in software architectures. In: Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering (1996)Google Scholar
  19. 19.
    Merelli, E., Paoletti, N., Tesei, L.: Adaptability checking in complex systems. Sci. Comput. Program. 115–116, 23–46 (2016)CrossRefGoogle Scholar
  20. 20.
    Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.R.: Proactive self-adaptation under uncertainty: a probabilistic model checking approach. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pp. 1–12 (2015)Google Scholar
  21. 21.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In Proceedings of the 20th International Conference on Software Engineering, ICSE 1998, pp. 177–186. IEEE Computer Society, Washington, DC (1998)Google Scholar
  22. 22.
    Shen, W.-M., Will, P.M., Galstyan, A., Chuong, C.-M.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots 17(1), 93–105 (2004)CrossRefGoogle Scholar
  23. 23.
    Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of reactive systems using rebeca. Fundam. Inform. 63(4), 385–410 (2004)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sloman, M., Lupu, E.C.: Engineering policy-based ubiquitous systems. Comput. J. 53(7), 1113–1127 (2010)CrossRefGoogle Scholar
  25. 25.
    Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distributed graph transformation: towards configurable distributed systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 179–193. Springer, Heidelberg (2000). Scholar
  26. 26.
    Villalbaa, C., Zambonelli, F.: Towards nature-inspired pervasive service ecosystems: concepts and simulation experiences. J. Network Comput. Appl. 34(2), 589–602 (2011)CrossRefGoogle Scholar
  27. 27.
    Viroli, M., Casadei, M., Nardini, E., Omicini, A.: Towards a pervasive infrastructure for chemical-inspired self-organising services. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 152–176. Springer, Heidelberg (2010). Scholar
  28. 28.
    Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in creol. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217. Springer, Heidelberg (2006). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Linnaeus UniversityVäxjöSweden
  2. 2.LIACS, Leiden UniversityLeidenThe Netherlands
  3. 3.Mälardalens Högskola, Sweden and Reykjavik UniversityVästeråsSweden

Personalised recommendations